航空学报 > 2026, Vol. 47 Issue (2): 132171-132171   doi: 10.7527/S1000-6893.2025.32171

迈向智能驱动的高超声速飞行器边界层主动质量引射减阻降热研究新范式

刘延芳1,2,3(), 王洪悦1, 鄂羽佳1, 齐乃明1,2,3   

  1. 1.哈尔滨工业大学 航天学院,哈尔滨 150001
    2.哈尔滨工业大学 苏州研究院,苏州 215104
    3.哈尔滨工业大学 郑州高等研究院,郑州 450000
  • 收稿日期:2025-04-28 修回日期:2025-05-30 接受日期:2025-08-15 出版日期:2025-08-29 发布日期:2025-08-28
  • 通讯作者: 刘延芳 E-mail:lyf04025121@126.com
  • 基金资助:
    国家重点研发计划(2022YFB3902701)

A new paradigm of intelligence-driven active mass ejection drag and heat reduction research for hypersonic vehicle boundary layer

Yanfang LIU1,2,3(), Hongyue WANG1, Yujia E1, Naiming QI1,2,3   

  1. 1.School of Astronautics,Harbin Institute of Technology,Harbin 150001,China
    2.Suzhou Research Institute,Harbin Institute of Technology,Suzhou 215104,China
    3.Zhengzhou Advance Research Institute,Harbin Institute of Technology,Zhengzhou 450000,China
  • Received:2025-04-28 Revised:2025-05-30 Accepted:2025-08-15 Online:2025-08-29 Published:2025-08-28
  • Contact: Yanfang LIU E-mail:lyf04025121@126.com
  • Supported by:
    National Key Research and Development Program of China(2022YFB3902701)

摘要:

新一代高超声速飞行器因高马赫数、长飞行时间、过载大的特性,面临着极端气动加热与复杂力学环境,对减阻与降热性能提出了严峻挑战。聚焦高超声速飞行器边界层主动质量引射减阻降热研究方法,系统评述该领域的研究进展及其范式转型路径。全面梳理了传统研究范式——实验、理论与数值方法的发展现状,并揭示核心挑战:实验数据稀疏性与多场耦合测量瓶颈、数值模拟的“精度-效率”权衡困境以及多尺度耦合建模理论与方法缺失。基于这些挑战,提出了以数据驱动、物理信息融合和多尺度耦合为核心的智能化科研新范式,并归纳了其技术分类与前沿进展。通过流体力学场景中的应用案例,深入分析了该新范式的创新机制及其在解决传统研究范式挑战中的优势和潜在应用思路。旨在通过对智能化科研新范式的深入洞察,激发研究人员的兴趣,推动高超声速飞行器减阻降热研究的持续发展与范式跃迁,为后续提升新一代高超声速飞行器的减阻降热性能提供重要的参考与启示。

关键词: 高超声速飞行器, 边界层主动质量引射, 减阻降热, 流动控制, 数据驱动, 物理信息融合, 多尺度耦合

Abstract:

Due to the characteristics of high Mach number, long flight time and large overload, the new generation of hypersonic vehicle is facing extreme aerodynamic heating and complex mechanical environment, which poses a serious challenge to drag and heat reduction performance. This paper focuses on the research methods of active mass ejection drag and heat reduction in the boundary layer of hypersonic vehicles, and systematically reviews the research progress and paradigm transformation path in this field. Firstly, the development status of traditional research paradigm—experiment, theory and numerical method is comprehensively reviewed, and the core challenges are revealed: the bottleneck of experimental data sparsity and multi-field coupling measurement, the ‘precision-efficiency’ trade-off dilemma of numerical simulation, and the lack of multi-scale coupling modeling theory and method. Then, based on these challenges, a new paradigm of intelligent scientific research with data-driven, physical information fusion and multi-scale coupling as the core is proposed, and its technical classification and frontier progress are summarized. Finally, through the application cases in the fluid mechanics scenario, the innovation mechanism of the new paradigm and its advantages and potential application ideas in solving the challenges of traditional research paradigms are deeply analyzed. The purpose is to stimulate the interest of researchers through in-depth insight into the new paradigm of intelligent scientific research, promote the sustainable development and paradigm transition of drag and heat reduction research of hypersonic vehicles, and provide important reference and inspiration for the subsequent exploration of the improvement of drag and heat reduction performance of the new-generation hypersonic vehicles.

Key words: hypersonic vehicle, active boundary layer mass injection, drag and heat reduction, flow control, data-driven, physical information integration, multi-scale coupling

中图分类号: