吴光辉1, 王景2, 谢海润3, 马涂亮3, 苗强1, 向纪鑫3, 张淼3()
收稿日期:
2024-11-04
修回日期:
2024-11-06
接受日期:
2024-11-22
出版日期:
2024-12-02
发布日期:
2024-11-29
通讯作者:
张淼
E-mail:zhangm-168@163.com
基金资助:
Guanghui WU1, Jing WANG2, Hairun XIE3, Tuliang MA3, Qiang MIAO1, Jixin XIANG3, Miao ZHANG3()
Received:
2024-11-04
Revised:
2024-11-06
Accepted:
2024-11-22
Online:
2024-12-02
Published:
2024-11-29
Contact:
Miao ZHANG
E-mail:zhangm-168@163.com
Supported by:
摘要:
随着高性能计算和人工智能技术的迅猛发展,数据驱动的人工智能模型在民机气动设计领域得到了广泛研究,尤其在气动设计空间压缩、关键特征提取、流场预测和智能优化设计等方面展现出强大的技术潜力。然而,纯数据驱动模型在工程设计中的应用仍然面临诸多挑战,包括领域数据稀缺及高获取成本,以及模型在可靠性、通用性、可解释性和易用性方面的不足等。将物理知识与气动设计经验有机融合到模型开发中,成为解决上述挑战的关键路径,为推动该领域的技术进步提供了重要方向。从民机工程设计角度出发,结合智能气动设计的相关实践,回顾了数据与知识联合驱动的人工智能模型在知识嵌入、知识修正及知识挖掘3个方面的最新理论和进展,探讨了数据与知识联合驱动方法在民机气动设计领域的研究现状及应用潜力,并展望了智能气动设计新范式的未来。
中图分类号:
吴光辉, 王景, 谢海润, 马涂亮, 苗强, 向纪鑫, 张淼. 数据与知识联合赋能的民机智能气动设计[J]. 航空学报, 2025, 46(5): 531485.
Guanghui WU, Jing WANG, Hairun XIE, Tuliang MA, Qiang MIAO, Jixin XIANG, Miao ZHANG. Data and knowledge-enabled intelligent aerodynamic design for civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(5): 531485.
1 | MARTINS J R R A. Aerodynamic design optimization: Challenges and perspectives[J]. Computers & Fluids, 2022, 239: 105391. |
2 | MARTINS J R R A. A coupled-adjoint method for high-fidelity aero-structural optimization[D]. California: Stanford University, 2003. |
3 | KIM H J, NAKAHASHI K, OBAYASHI S, et al. Aerodynamic optimization of supersonic transport wing using unstructured adjoint method[J]. AIAA Journal, 2001, 39(6): 1011-1020. |
4 | ARIAS-MONTAÑO A, COELLO COELLO C A, MEZURA-MONTES E. Evolutionary algorithms applied to multi-objective aerodynamic shape optimization[M]∥Computational optimization, methods and algorithms. Berlin, Heidelberg: Springer, 2011: 211-240. |
5 | LI R Z, ZHANG M, ZHANG M H, et al. Multi-point aerodynamic optimization design of a dual-aisle airplane wing[C]∥31st Congress of the International Council of the Aeraonautical Sciences. Beijing: ICAS, 2018. |
6 | HUANG J T, ZHU Z, GAO Z H, et al. Aerodynamic multi-objective integrated optimization based on principal component analysis [J]. Chinese Journal of Aeronautics, 2017, 30(4): 1336-1348. |
7 | OBAYASHI S, JEONG S, CHIBA K. Multi-objective design exploration for aerodynamic configurations[C]∥35th AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2005. |
8 | ZUHAL L R, PALAR P S, SHIMOYAMA K. A comparative study of multi-objective expected improvement for aerodynamic design[J]. Aerospace Science and Technology, 2019, 91: 548-560. |
9 | WANG HC, FU TF, DU Y, et al. Scientific discovery in the age of artificial intelligence[J]. Nature, 2023, 620(7972): 47-60. |
10 | LI J C, BOUHLEL M A, MARTINS JOAQUIM R R A. Data-based approach for fast airfoil analysis and optimization [J]. AIAA Journal, 2019, 57(2): 581-596. |
11 | LIU R L, HUA Y, ZHOU Z F, et al. Prediction and optimization of airfoil aerodynamic performance using deep neural network coupled Bayesian method [J]. Physics of Fluids, 2022, 34(11): 117116. |
12 | HERNÁNDEZ-LOBATO J M, ADAMS R P. Probabilistic backpropagation for scalable learning of Bayesian neural networks[C]∥International Conference on Machine Learning. 2015. |
13 | SEKAR V, JIANG Q H, SHU C, et al. Fast flow field prediction over airfoils using deep learning approach[J]. Physics of Fluids, 2019, 31(5): 057103. |
14 | WANG J, HE C, LI R Z, et al. Flow field prediction of supercritical airfoils via variational autoencoder based deep learning framework[J]. Physics of Fluids, 2021, 33(8): 086108. |
15 | LI J C, DU X S, MARTINS JOAQUIM R R A. Machine learning in aerodynamic shape optimization[J]. Progress in Aerospace Sciences, 2022, 134: 100849. |
16 | KOU J Q, ZHANG W W. Data-driven modeling for unsteady aerodynamics and aeroelasticity[J]. Progress in Aerospace Sciences, 2021, 125: 100725. |
17 | 陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报, 2019, 40(1): 522480. |
CHEN H X, DENG K W, LI R Z. Application of machine learning techniques in aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522480 (in Chinese). | |
18 | 孙刚, 王聪, 王立悦, 等. 人工智能在气动设计中的应用与展望[J]. 民用飞机设计与研究, 2021(3): 1-9, 147. |
SUN G, WANG C, WANG L Y, et al. Application and prospect of artificial intelligence in aerodynamic design[J]. Civil Aircraft Design & Research, 2021(3): 1-9, 147 (in Chinese). | |
19 | DONG Y Q, TAO J, ZHANG Y M, et al. Deep learning in aircraft design, dynamics, and control: Review and prospects[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(4): 2346-2368. |
20 | LE CLAINCHE S, FERRER E, GIBSON S, et al. Improving aircraft performance using machine learning: A review[J]. Aerospace Science and Technology, 2023, 138: 108354. |
21 | GUIDOTTI R, MONREALE A, RUGGIERI S, et al. A survey of methods for explaining black box models[J]. ACM computing surveys (CSUR), 2018, 51(5): 1-42. |
22 | SHAFIQUE M, NASEER M, THEOCHARIDES T, et al. Robust machine learning systems: Challenges, current trends, perspectives, and the road ahead[J]. IEEE Design & Test, 2020, 37(2): 30-57. |
23 | JOURDAN N, SEN S, HUSOM E J, et al. On the reliability of machine learning applications in manufacturing environments[DB/OL]. arXiv preprint: 2112.06986, 2021. |
24 | DOSHI-VELEZ F, KIM B. Considerations for evaluation and generalization in interpretable machine learning[M]∥Explainable and interpretable models in computer vision and machine learning. Cham: Springer, 2018: 3-17. |
25 | BARBIERO P, SQUILLERO G, TONDA A. Modeling generalization in machine learning: A methodological and computational study[DB/OL]. arXiv preprint: 2006.15680, 2020. |
26 | ROSCHER R, BOHN B, DUARTE M F, et al. Explainable machine learning for scientific insights and discoveries[J]. IEEE Access, 2020, 8: 42200-42216. |
27 | LI R Z, ZHANG Y F, CHEN H X. Physically interpretable feature learning of supercritical airfoils based on variational autoencoders[J]. AIAA Journal, 2022, 60(11): 6168-6182. |
28 | 李润泽, 张宇飞, 陈海昕. “人在回路” 思想在飞机气动优化设计中演变与发展[J]. 空气动力学学报, 2017, 35(4): 529-543. |
LI R Z, ZHANG Y F, CHEN H X. Evolution and development of “man-in-loop” in aerodynamic optimization design[J]. Acta Aerodynamica Sinica, 2017, 35(4): 529-543 (in Chinese). | |
29 | CAI S, MAO Z, WANG Z, et al. Physics-informed neural networks (PINNs) for fluid mechanics: A review[J]. Acta Mechanica Sinica, 2021, 37(12): 1727-1738. |
30 | ZHAO T, ZHANG Y F, CHEN H X, et al. Supercritical wing design based on airfoil optimization and 2.75D transformation[J]. Aerospace Science and Technology, 2016, 56: 168-182. |
31 | INGER G R. Application of Oswatitsch’s theorem to supercritical airfoil drag calculation[J]. Journal of aircraft, 1993, 30(3): 415-416. |
32 | PEARCEY H H. Some effects of shock-induced separation of turbulent boundary layers in transonic flow past aerofoils: R. & M. No. 3108[R]. London: Her Majesty’s Stationery Office, 1959. |
33 | MASON W. Analytic models for technology integration in aircraft design[C]∥Aircraft Design, Systems and Operations Conference. Reston: AIAA, 1990. |
34 | LI R Z, ZHANG Y F, CHEN H X. Knowledge discovery with computational fluid dynamics: Supercritical airfoil database and drag divergence prediction[J]. Physics of Fluids, 2023, 35(1): 016113 |
35 | 陈迎春, 张美红, 张淼, 等. 大型客机气动设计综述[J]. 航空学报, 2019, 40(1): 522759. |
CHEN Y C, ZHANG M H, ZHANG M, et al. Review of large civil aircraft aerodynamic design [J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522759 (in Chinese). | |
36 | 李润泽, 张宇飞, 陈海昕. 超临界机翼多目标气动优化设计的策略与方法[J]. 航空学报, 2020, 41(5): 623409. |
LI R Z, ZHANG Y F, CHEN H X. Strategies and methods for multi-objective aerodynamic optimization design for supercritical wings[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623409 (in Chinese). | |
37 | LING J L, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807: 155-166. |
38 | YAN C Y, LI H R, ZHANG Y F, et al. Data-driven turbulence modeling in separated flows considering physical mechanism analysis[J]. International Journal of Heat and Fluid Flow, 2022, 96: 109004. |
39 | DENG Z W, WANG J, LIU H S, et al. Prediction of transonic flow over supercritical airfoils using geometric-encoding and deep-learning strategies[J]. Physics of Fluids, 2023, 35(7): 075146. |
40 | CHEN L W, THUEREY N. Towards high-accuracy deep learning inference of compressible flows over aerofoils[J]. Computers & Fluids, 2023, 250: 105707. |
41 | LONG Z, LU Y, MA X, et al. PDE-net: Learning PDEs from data[C]∥International Conference on Machine Learning. 2018. |
42 | QU J G, CAI W H, ZHAO Y J. Learning time-dependent PDEs with a linear and nonlinear separate convolutional neural network[J]. Journal of Computational Physics, 2022, 453: 110928. |
43 | RAO C P, REN P, WANG Q, et al. Encoding physics to learn reaction-diffusion processes[J]. Nature Machine Intelligence, 2023, 5: 765-779. |
44 | YE Z H, HUANG X, CHEN L H, et al. PDEFORMER: Towards a foundation model for one-dimensional partial differential equations[DB/OL]. arXiv preprint: 2402.12652, 2024. |
45 | YU Y, YAO H P, LIU Y M. Aircraft dynamics simulation using a novel physics-based learning method[J]. Aerospace Science and Technology, 2019, 87: 254-264. |
46 | RAISSI M, YAZDANI A, KARNIADAKIS G E. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations[J]. Science, 2020, 367(6481): 1026-1030. |
47 | RAISSI M, WANG Z C, TRIANTAFYLLOU M S, et al. Deep learning of vortex-induced vibrations[J]. Journal of Fluid Mechanics, 2019, 861: 119-137. |
48 | YANG Y J, LI R Z, ZHANG Y F, et al. Flow field prediction of airfoil off-design conditions based on a modified variational autoencoder[J]. AIAA Journal, 2022, 60(10): 5805-5820. |
49 | CHEN Y T, HUANG D, ZHANG D X, et al. Theory-guided hard constraint projection (hcp): A knowledge-based data-driven scientific machine learning method[J]. Journal of Computational Physics, 2021, 445: 110624. |
50 | DU M G, CHEN Y T, ZHANG D X. Autoke: An automatic knowledge embedding framework for scientific machine learning[J]. IEEE Transactions on Artificial Intelligence, 2023; 4(6): 1564-1578. |
51 | HOLLAND J R, BAEDER J D, DURAISAMY K. Field inversion and machine learning with embedded neural networks: Physics-consistent neural network training[C]∥AIAA Aviation 2019 Forum. Reston: AIAA, 2019. |
52 | DOHERTY P, LUKASZEWICZ W, SZALAS A. Knowledge representation techniques: A rough set approach[M]∥Studies in Fuzziness and Soft Computing. Berlin: Springer, 2006. |
53 | PAWAR S, SAN O, AKSOYLU B, et al. Physics guided machine learning using simplified theories[J]. Physics of Fluids, 2021, 33(1): 011701. |
54 | WANG X, KOU J Q, ZHANG W W, et al. Incorporating physical models for dynamic stall prediction based on machine learning[J]. AIAA Journal, 2022, 60(7): 4428-4439. |
55 | XIE H R, WANG J, ZHANG M. Knowledge-embedded meta-learning model for lift coefficient prediction of airfoils[J]. Expert Systems with Applications, 2023, 233: 121002. |
56 | LI S P, SNAIKI R, WU T. A knowledge-enhanced deep reinforcement learning-based shape optimizer for aerodynamic mitigation of wind-sensitive structures[J]. Computer-Aided Civil and Infrastructure Engineering, 2021, 36(6): 733-746. |
57 | LI R Z, ZHANG Y F, CHEN H X. Transfer learning from two-dimensional supercritical airfoils to three-dimensional transonic swept wings[J]. Chinese Journal of Aeronautics, 2023, 36(9): 96-110. |
58 | ANDRÉS-PÉREZ E. Data mining and machine learning techniques for aerodynamic databases: Introduction, methodology and potential benefits[J]. Energies, 2020, 13(21): 5807. |
59 | MAIMON O, ROKACH L. Data mining and knowledge discovery handbook: Vol. 2[M]. New York: Springer-Verlag, 2005. |
60 | HO T B. Knowledge discovery[J]. Knowledge Science, 2016: 70-93. |
61 | UDRESCU S M, TEGMARK M. AI Feynman: A physics-inspired method for symbolic regression[J]. Science Advances, 2020, 6(16): eaay2631. |
62 | PETER J E, DWIGHT R P. Numerical sensitivity analysis for aerodynamic optimization: A survey of approaches[J]. Computers & Fluids, 2010, 39(3): 373-391. |
63 | CHIBA K, JEONG S, OBAYASHI S, et al. Knowledge discovery in aerodynamic design space for flyback-booster wing using data mining[C]∥14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2006. |
64 | CHIBA K, JEONG S, OBAYASHI S, et al. Data mining for multidisciplinary design space of regional-jet wing[C]∥2005 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2005. |
65 | LUCHINI P, BOTTARO A. Adjoint equations in stability analysis[J]. Annual Review of Fluid Mechanics, 2014, 46: 493-517. |
66 | LIU G C, YAN S C. Active subspace: Toward scalable low-rank learning[J]. Neural Computation, 2012, 24 (12): 3371-3394. |
67 | Xu J S, Lou F Y. A rapid method for turbomachinery aerodynamic design and optimization using active subspace[J]. Journal of the Global Power and Propulsion Society, 2024, 8: 24-38. |
68 | LUKACZYK T W, CONSTANTINE P, PALACIOS F, et al. Active subspaces for shape optimization[C]∥10th AIAA Multidisciplinary Design Optimization Conference. Reston: AIAA, 2014. |
69 | LUO J Q, LIU F. Statistical evaluation of performance impact of manufacturing variability by an adjoint method[J]. Aerospace Science and Technology, 2018, 77: 471-484. |
70 | ANGELIS D, SOFOS F, KARAKASIDIS T E. Artificial intelligence in physical sciences: Symbolic regression trends and perspectives[J]. Archives of Computational Methods in Engineering, 2023, 30(6): 3845-3865. |
71 | MAKKE N, CHAWLA S. Interpretable scientific discovery with symbolic regression: A review[J]. Artificial Intelligence Review, 2024, 57(1): 2. |
72 | KEREN L S, LIBERZON A, LAZEBNIK T. A computational framework for physics-informed symbolic regression with straightforward integration of domain knowledge[J]. Scientific Reports, 2023, 13: 1249. |
73 | SCHMELZER M, DWIGHT R, CINNELLA P. Data-driven deterministic symbolic regression of nonlinear stress-strain relation for RANS turbulence modelling[C]∥2018 Fluid Dynamics Conference. Reston: AIAA, 2018. |
74 | VADDIREDDY H, RASHEED A, STAPLES A E, et al. Feature engineering and symbolic regression methods for detecting hidden physics from sparse sensor observation data[J]. Physics of Fluids, 2020, 32(1): 015113. |
75 | WU C Y, ZHANG Y F. Enhancing the shear-stress-transport turbulence model with symbolic regression: A generalizable and interpretable data-driven approach[J]. Physical Review Fluids, 2023, 8(8): 084604. |
76 | SARRADJ E, GEYER T. Symbolic regression modeling of noise generation at porous airfoils[J]. Journal of Sound and Vibration, 2014, 333(14): 3189-3202. |
77 | GUO S Q, LIU W, ZHANG C N, et al. Aerodynamic optimization of hypersonic blunted waveriders based on symbolic regression[J]. Aerospace Science and Technology, 2024, 144: 108801. |
78 | RICHMOND-NAVARRO G, CALDERÓN-MUÑOZ W R, LEBOEUF R, et al. A Magnus wind turbine power model based on direct solutions using the blade element momentum theory and symbolic regression[J]. IEEE Transactions on Sustainable Energy, 2017, 8(1): 425-430. |
79 | PEARL J. Causal inference in statistics: An overview[J]. Statistics Surveys, 2009, 3: 96-146. |
80 | QUAN F X, SUN X M, ZHAO H Y, et al. Detection of rotating stall inception of axial compressors based on deep dilated causal convolutional neural networks[J]. IEEE Transactions on Automation Science and Engineering, 2024, 21(2): 1235-1243. |
81 | NEGREIRO D M P, JOKSIMOVIC A. Simple causal-network descriptive framework for aeroplane systems and the application to propulsive system sizing[C]∥AIAA Scitech 2024 Forum. Reston: AIAA, 2024. |
82 | WANG W, MO R, FAN Q M. Knowledge extraction from aerodynamic simulation data of compressor rotor[J]. Procedia Engineering, 2011, 15: 1792-1796. |
83 | VISWANATH A, FORRESTER A I J, KEANE A J. Dimension reduction for aerodynamic design optimization[J]. AIAA Journal, 2011, 49(6): 1256-1266. |
84 | QIU Y S, BAI J Q, LIU N, et al. Global aerodynamic design optimization based on data dimensionality reduction[J]. Chinese Journal of Aeronautics, 2018, 31(4): 643-659. |
85 | OYAMA A, NONOMURA T, FUJII K. Data mining of pareto-optimal transonic airfoil shapes using proper orthogonal decomposition[J]. Journal of Aircraft, 2010, 47(5): 1756-1762. |
86 | WANG J, XIE H, ZHANG M, et al. Physics-assisted reduced-order modeling for identifying dominant features of transonic buffet[J]. Physics of Fluids, 2023, 35(6): 066124. |
87 | WANG G G, SHAN S. Review of metamodeling techniques in support of engineering design optimization[C]∥Proceedings of ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. New York: ASME, 2006. |
88 | MACKMAN T J, ALLEN C B, GHOREYSHI M, et al. Comparison of adaptive sampling methods for generation of surrogate aerodynamic models[J]. AIAA Journal, 2013, 51(4): 797-808. |
89 | AHMED M, QIN N. Surrogate-based aerodynamic design optimization: Use of surrogates in aerodynamic design optimization[J]. International Conference on Aerospace Sciences and Aviation Technology, 2009, 13: 1-26. |
90 | FORRESTER A I J, KEANE A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45(1): 50-79. |
91 | MACKMAN T J, ALLEN C B. Investigation of an adaptive sampling method for data interpolation using radial basis functions[J]. International Journal for Numerical Methods in Engineering, 2010, 83(7): 915-938. |
92 | DENG K W, CHEN H X. A hybrid aerodynamic optimization algorithm based on differential evolution and RBF response surface[C]∥Proceedings of the 17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2016. |
93 | LI R Z, DENG K W, ZHANG Y F, et al. Pressure distribution guided supercritical wing optimization[J]. Chinese Journal of Aeronautics, 2018, 31(9): 1842-1854. |
94 | LIU J, HAN Z H, SONG W P. Comparison of infill sampling criteria in kriging-based aerodynamic optimization[C]∥28th Congress of the International Council of the Aeronautical Sciences. 2012. |
95 | TOAL D J J, KEANE A J. Efficient multipoint aerodynamic design optimization via cokriging[J]. Journal of Aircraft, 2011, 48(5): 1685-1695. |
96 | HAN Z H, ZHANG Y, SONG C X, et al. Weighted gradient-enhanced Kriging for high-dimensional surrogate modeling and design optimization[J]. AIAA Journal, 2017, 55(12): 4330-4346. |
97 | DASGUPTA S, HSU D. Hierarchical sampling for active learning[C]∥Proceedings of the 25th International Conference on Machine Learning-ICML ’08. New York: ACM, 2008. |
98 | MAYER C, TIMOFTE R. Adversarial sampling for active learning[C]∥2020 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway: IEEE Press, 2020. |
99 | LI R Z, ZHANG Y F, CHEN H X. Pressure distribution feature-oriented sampling for statistical analysis of supercritical airfoil aerodynamics[J]. Chinese Journal of Aeronautics, 2022, 35(4): 134-147. |
100 | XU M F, SONG S F, SUN X X, et al. Machine learning for adjoint vector in aerodynamic shape optimization[J]. Acta Mechanica Sinica, 2021, 37(9): 1416-1432. |
101 | LI J C, ZHANG M Q, MARTINS J R R A, et al. Efficient aerodynamic shape optimization with deep-learning-based geometric filtering[J]. AIAA Journal, 2020, 58(10): 4243-4259. |
102 | LI J C, HE S C, ZHANG M Q, et al. Physics-based data-driven buffet-onset constraint for aerodynamic shape optimization[J]. AIAA Journal, 2022, 60(8): 4775-4788. |
103 | LI J C, HE S C, MARTINS J R R A. Data-driven constraint approach to ensure low-speed performance in transonic aerodynamic shape optimization[J]. Aerospace Science and Technology, 2019, 92: 536-550. |
104 | YANG Y J, LI R Z, ZHANG Y F, et al. Buffet onset optimization for supercritical airfoils with prior-based pressure profile prediction model[C]∥Proceedings of the AIAA Scitech 2024 Forum. Reston: AIAA, 2024. |
105 | WU H, LUO H, WANG H, et. al . Transolver: A fast transformer solver for PDEs on general geometries[C]∥Forty-first International Conference on Machine Learning. 2024. |
106 | CAMPBELL R L, LYNDE M N. A knowledge-based optimization method for aerodynamic design[C]∥Proceedings of the AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
107 | 李润泽. 流场结构-性能指标共同导向的优化设计[D]. 北京: 清华大学, 2021. |
LI R Z. Optimization design jointly guided by flow field structures and performance metrics [D]. Beijing: Tsinghua University, 2021 (in Chinese). | |
108 | 张宇飞. 基于先进CFD方法的民用客机气动优化设计[D]. 北京: 清华大学, 2010. |
ZHANG Y F. Aerodynamic optimization design of civil passenger aircraft based on advanced CFD method[D]. Beijing: Tsinghua University, 2010 (in Chinese). | |
109 | KINGMA D P, WELLING M. Auto-encoding variational bayes[C]∥2nd International Conference on Learning Representations. 2014. |
110 | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]∥NIPS’14: Proceedings of the 28th International Conference on Neural Information Processing Systems. 2014(2): 2672-2680. |
111 | HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[J]. Advances in Neural Information Processing Systems, 2020, 33: 6840-6851. |
112 | SUN K B, WANG W T, CHENG R, et al. Evolutionary generative design of supercritical airfoils: An automated approach driven by small data[J]. Complex & Intelligent Systems, 2024, 10(1): 1167-1183. |
113 | WANG C, WANG S Y, WANG L Y, et al. Framework of nacelle inverse design method based on improved generative adversarial networks[J]. Aerospace Science and Technology, 2022, 121: 107365. |
114 | CHEN W, CHIU K, FUGE M D. Airfoil design parameterization and optimization using Bézier generative adversarial networks[J]. AIAA Journal, 2020, 58(11): 4723-4735. |
115 | CAMPBELL R L, LYNDE M N. A knowledge-based optimization method for aerodynamic design[C]∥AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
116 | LIU J, WU J Y, XIE H R, et al. AFBench: A large-scale benchmark for airfoil design[DB/OL]. arXiv preprint: 2406.18846, 2024. |
117 | WESTON D, ZEUNE C. Exercise of knowledge-based aerodynamic design process on the AFRL SUGAR model[C]∥AIAA Aviation 2022 Forum. Reston: AIAA, 2022. |
118 | 李润泽, 张宇飞, 陈海昕. 针对超临界翼型气动修型策略的强化学习[J]. 航空学报, 2021, 42(4): 523810. |
LI R Z, ZHANG Y F, CHEN H X. Reinforcement learning method for supercritical airfoil aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 523810 (in Chinese). | |
119 | YAN X H, ZHU J H, KUANG M C, et al. Aerodynamic shape optimization using a novel optimizer based on machine learning techniques[J]. Aerospace Science and Technology, 2019, 86: 826-835. |
120 | QIN S, WANG S Y, WANG L Y, et al. Multi-objective optimization of cascade blade profile based on reinforcement learning[J]. Applied Sciences, 2020, 11(1): 106. |
121 | LIU Z Y, ZHANG M, SUN D, et al. A deep reinforcement learning optimization framework for supercritical airfoil aerodynamic shape design[J]. Structural and Multidisciplinary Optimization, 2024, 67(3): 34. |
122 | LI R Z, ZHANG Y F, CHEN H X. Learning the aerodynamic design of supercritical airfoils through deep reinforcement learning[J]. AIAA Journal, 2021, 59(10): 3988-4001. |
123 | HUI X Y, WANG H, LI W Q, et al. Multi-object aerodynamic design optimization using deep reinforcement learning[J]. AIP Advances, 2021, 11(8): 085311. |
124 | VIQUERAT J, RABAULT J, KUHNLE A, et al. Direct shape optimization through deep reinforcement learning[J]. Journal of Computational Physics, 2021, 428: 110080. |
125 | DUSSAUGE T P, SUNG W J, PINON FISCHER O J, et al. A reinforcement learning approach to airfoil shape optimization[J]. Scientific Reports, 2023, 13: 9753. |
[1] | 曾宇, 汪洪波, 连城阅, 杨揖心, 熊大鹏, 孙明波, 刘卫东. 两种SST湍流模型改进方法适用性分析[J]. 航空学报, 2024, 45(S1): 730574-730574. |
[2] | 李广佳, 王红波, 张凯, 仪志胜. 临近空间太阳能无人机增升减阻技术综述[J]. 航空学报, 2024, 45(5): 529644-529644. |
[3] | 单圣哲, 张伟伟. 基于自博弈深度强化学习的空战智能决策方法[J]. 航空学报, 2024, 45(4): 328723-328723. |
[4] | 王琪, 武龙, 刘振, 刘建霞, 夏凉. 热弹性多构型梯度点阵结构拓扑优化设计[J]. 航空学报, 2024, 45(23): 230367-230367. |
[5] | 李俊燊, 孟祥彦, 石暖暖, 李伟, 祝宁华, 李明. 光学神经网络智能处理:技术演变与未来展望[J]. 航空学报, 2024, 45(20): 630439-630439. |
[6] | 杨晓飞, 孙太璐, 孟德君, 尹海宝, 王咏梅. 兼顾多模式的核心机驱动风扇级气动设计方法[J]. 航空学报, 2024, 45(2): 128625-128625. |
[7] | 高天贺, 田阔, 黄蕾, 张澍, 李增聪. 数据驱动的曲面构件形状⁃拓扑协同优化方法[J]. 航空学报, 2024, 45(2): 428806-428806. |
[8] | 姬田园, 楚武利, 张皓光, 郭正涛, 孟德君. 基于数据驱动的扭转度偏差对压气机性能的影响[J]. 航空学报, 2024, 45(19): 629938-629938. |
[9] | 董立卓, 张思琪, 张钊, 吴宝海. 机理⁃数据混合驱动的叶片加工变形预测方法[J]. 航空学报, 2024, 45(13): 629037-629037. |
[10] | 杨倩, 王彦哲, 杨迪, 李泽众, 曲巍崴. 基于数据驱动的纤维增强复合材料自动铺放速度预测与规划[J]. 航空学报, 2024, 45(10): 429313-429313. |
[11] | 崔西明, 邱志鹏, 魏嘉, 张弛, 宋凯, 李喆, 王树鹏. 基于数据驱动的结构钢表面应力磁巴克豪森噪声表征方法[J]. 航空学报, 2023, 44(8): 427237-427237. |
[12] | 李春鹏, 钱战森, 孙侠生. 远程民机变弯度机翼后缘外形变形矩阵气动设计[J]. 航空学报, 2023, 44(7): 127335-127335. |
[13] | 何林坤, 薛文超, 张冉, 李惠峰. 运载火箭动力着陆段制导控制方法综述与展望[J]. 航空学报, 2023, 44(23): 628462-628462. |
[14] | 张旭辉, 解春雷, 刘思佳, 闫溟, 邢思远. 智能变形飞行器发展需求及难点分析[J]. 航空学报, 2023, 44(21): 529302-529302. |
[15] | 王晓峰, 屈峰, 付俊杰, 王泽宇, 刘超宇, 白俊强. 基于离散伴随的高超内转式进气道气动优化设计[J]. 航空学报, 2023, 44(19): 128352-128352. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学