航空学报 > 2026, Vol. 47 Issue (2): 132158-132158   doi: 10.7527/S1000-6893.2025.32158

上层大气层长期飞行的力学原理和概念方案

靳旭红1,2, 李子玮1, 石伟龙1, 刘奕豪1()   

  1. 1.中国航天空气动力技术研究院,北京 100074
    2.昆明理工大学 民航与航空学院,昆明 650500
  • 收稿日期:2025-04-24 修回日期:2025-05-12 接受日期:2025-06-05 出版日期:2025-06-23 发布日期:2025-06-20
  • 通讯作者: 刘奕豪 E-mail:1587993007@qq.com
  • 基金资助:
    国家自然科学基金(12572383)

Mechanic principle and concept scheme for flying in upper atmosphere for a long time

Xuhong JIN1,2, Ziwei LI1, Weilong SHI1, Yihao LIU1()   

  1. 1.China Academy of Aerospace Aerodynamics,Beijing 100074,China
    2.Faculty of Civil Aviation and Aeronautics,Kunming University of Science and Technology,Kunming 650500,China
  • Received:2025-04-24 Revised:2025-05-12 Accepted:2025-06-05 Online:2025-06-23 Published:2025-06-20
  • Contact: Yihao LIU E-mail:1587993007@qq.com
  • Supported by:
    National Natural Science Foundation of China(12572383)

摘要:

针对目前尚无飞行器在上层大气层长期飞行的问题,叙述了上层大气层长期飞行的力学原理,从气动/推进一体化设计的角度构建了初步气动构型,采用直接模拟Monte Carlo (DSMC)方法对该构型的气动阻力和进气道性能进行了评估,提出了该构型在上层大气层长期飞行的概念方案,分析和讨论了该方案在有限太阳能供应条件下达到推力和阻力平衡的可行性。上层大气层飞行器初步构型由飞行器本体、前掠太阳能电池翼和吸气式电推进系统内凹型进气道组成。数值计算结果表明,前掠翼设计能提升进气道的收集性能。所设计的气动构型在海拔180 km高度以7 760 m/s飞行时,在一定假设条件下,吸气式电推进系统产生的推力等于飞行器总阻力,具备长期飞行的能力。气固相互作用(GSI)适应系数的降低不但能降低飞行器的阻力,还能提升进气道的气体收集和压缩性能,因此能同时降低推阻平衡对电离效率和推功比的要求。如果能够获得较高的推功比,可采用小面积太阳翼设计,降低推阻平衡对电离效率的要求。如果能够获得较高的电离效率,可采用大面积太阳翼设计,降低推阻平衡对推功比的要求。通过飞行器表面材料设计或光滑处理降低GSI适应系数,以及通过发展上层大气组分高效的电离和加速技术提高电离效率和推功比,是实现推阻平衡和长期飞行的有效手段。

关键词: 上层大气层, 吸气式电推进, 气动/推进一体化设计, 推阻平衡, 适应系数

Abstract:

In order to achieve a long-time flight in the upper atmosphere, the mechanic principle for flying in the upper atmosphere for a long time is described and a preliminary configuration, which takes into account the aerodynamic and propulsion aspects simultaneously, is designed. After evaluating the aerodynamic drags and inlet performance by Direct Simulation Monte Carlo (DSMC) method, a concept scheme is devised and the feasibility of the thrust-drag balance subjected to a limited supply of solar power is analyzed. The aerodynamic configuration is composed of the body, the sweep-forward solar panel, and the concave inlet of an Atmosphere-Breathing Electric Propulsion (ABEP) system. Flow characteristics from numerical calculations indicate that the sweep-forward design of solar panel can enhance the collection performance of the inlet. Under some assumptions, the ABEP is able to produce the thrust, which can cancel the total drag of the configuration designed here, proving its ability of flying at an altitude of 180 km at 7 760 m/s. Decreasing the accommodation coefficient in the Gas-Surface Interaction (GSI) can not only reduce the total drag but also enhance the collection and compression performances of the inlet, thus relaxing the requirement for the ionization efficiency and thrust-to-power ratio in order to acquire the thrust-drag balance. If a larger thrust-to-power ratio can be obtained, a solar panel with a smaller area can be employed to relieve the demand for the ionization efficiency, and if a higher ionization efficiency can be obtained, a solar panel with a larger area can be utilized to alleviate the requirement for the thrust-to-power ratio. In the future, the effective methods to achieve thrust-drag balance and long-time flight in the upper atmosphere are reducing the GSI accommodation coefficient by means of designing or smoothing the aircraft surface material and increasing the ionization efficiency and thrust-to-power ratio by developing efficient ionization and acceleration technology.

Key words: upper atmosphere, atmosphere-breathing electric propulsion, integrated aerodynamic and propulsion design, thrust-drag balance, accommodation coefficient

中图分类号: