| [1] |
ZHANG Y, ZHANG Y, LUO G, et al. Research progress of aircraft icing hazard and ice wind tunnel test technology[EB/OL]. [2025-03-05]. .
|
| [2] |
LYNCH F T, KHODADOUST A. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Sciences, 2001, 37(8): 669-767.
|
| [3] |
APPIAH-KUBP. U.S. inflight icing accidents and incidents, 2006 to 2010[D]. Knoxville: The University of Tennessee, 2013.
|
| [4] |
刘欣乐, 姜亚楠, 辛荣提, 等. 超疏水电热复合分区防冰策略[J]. 航空学报, 2025, 46(9): 155-165.
|
|
LIU X L, JIANG Y N, XIN R T, et al. Anti-icing stra-tegy of superhydrophobic electric thermal composite zo-ning[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(9): 155-165 (in Chinese).
|
| [5] |
SILVA G, SILVARES O, ZERBINI E. Airfoil anti-ice system modeling and simulation[C]∥41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.
|
| [6] |
苏媛, 徐忠达, 吴祯龙. 飞机积冰后若干飞行力学问题综述[J]. 航空动力学报, 2014, 29(8): 1878-1893.
|
|
SU Y, XU Z D, WU Z L. Overview of several ice accretion effects on aircraft flight dynamics[J]. Journal of Aerospace Power, 2014, 29(8): 1878-1893 (in Chinese).
|
| [7] |
WU Y N, ZHANG D L, CHEN W J, et al. Optimization for electric heating power’s distribution on electro-thermal anti-icing surface[C]∥CSAA/IET International Conference on Aircraft Utility Systems. Guiyang: CSAA, 2019: 779-784.
|
| [8] |
ARIZMENDI GUTIÉRREZ B, DELLA NOCE A, GALLIA M, et al. Optimization of a thermal ice protection system by means of a genetic algorithm[M]∥Bioinspired optimization methods and their applications. Cham: Springer International Publishing, 2020: 189-200.
|
| [9] |
刘宗辉, 卜雪琴, 林贵平, 等. 基于PHengLEI的非稳态电热除冰过程仿真[J]. 空气动力学学报, 2023, 41(2): 53-63.
|
|
LIU Z H, BU X Q, LIN G P, et al. Simulation of unsteady electrothermal deicing process based on PHengLEI[J]. Acta Aerodynamica Sinica, 2023, 41(2): 53-63 (in Chinese).
|
| [10] |
GUO X F, YANG Q, ZHENG H R, et al. Optimization of power distribution for electrothermal anti-icing systems by differential evolution algorithm[J]. Applied Thermal Engineering, 2023, 221: 119875.
|
| [11] |
POURBAGIAN M, HABASHI W G. Surrogate-based optimization of electrothermal wing anti-icing systems[J]. Journal of Aircraft, 2013, 50(5): 1555-1563.
|
| [12] |
POURBAGIAN M, HABASHI W. Power and design optimization of electro-thermal anti-icing systems via FENSAP-ICE[C]∥The 4th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2012.
|
| [13] |
NIU J, SANG W, QIU A, et al. An optimization of anti-icing chamber based on POD and Kriging[EB/OL]. [2025-04-29]. .
|
| [14] |
杨倩, 郑皓冉, 程显达, 等. 基于引气控制的热气防冰优化设计方法[J]. 航空学报, 2023, 44(S2): 729285.
|
|
YANG Q, ZHENG H R, CHENG X D, et al. Optimization design method for hot air anti-icing system based on bleed air control[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729285 (in Chinese).
|
| [15] |
杨倩, 郭晓峰, 李芹, 等. 基于POD和代理模型的热气防冰性能预测方法[J]. 航空学报, 2023, 44(1): 626992.
|
|
YANG Q, GUO X F, LI Q, et al. Hot air anti-icing performance estimation method based on POD and surrogate model[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 626992 (in Chinese).
|
| [16] |
柳家齐, 陈荣钱, 楼锦华, 等. 基于深度学习的高速直升机旋翼翼型气动优化设计[J]. 航空学报, 2024, 45(9): 529828.
|
|
LIU J Q, CHEN R Q, LOU J H, et al. Aerodynamic shape optimization of high-speed helicopter rotor airfoil based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529828 (in Chinese).
|
| [17] |
LIU J, KE P. Aero-engine inlet vane structure optimization for anti-icing with hot air film using neural network and genetic algorithm: 2019-01-2021[EB/OL]. [2025-02-05]. .
|
| [18] |
屈经国, 彭博, 易贤, 等. 基于深度神经网络的任意翼型结冰预测方法[J]. 空气动力学学报, 2023, 41(7): 48-55.
|
|
QU J G, PENG B, YI X, et al. Icing prediction method for arbitrary airfoil using deep neural networks[J]. Acta Aerodynamica Sinica, 2023, 41(7): 48-55 (in Chinese).
|
| [19] |
何磊, 钱炜祺, 易贤, 等. 基于转置卷积神经网络的翼型结冰冰形图像化预测方法[J]. 国防科技大学学报, 2021, 43(3): 98-106.
|
|
HE L, QIAN W Q, YI X, et al. Graphical prediction method of airfoil ice shape based on transposed convolution neural networks[J]. Journal of National University of Defense Technology, 2021, 43(3): 98-106 (in Chinese).
|
| [20] |
WANG X, KOU J Q, ZHANG W W. Unsteady aerodynamic prediction for iced airfoil based on multi-task lear-ning[J]. Physics of Fluids, 2022, 34(8): 087117.
|
| [21] |
陈宁立, 易贤, 王强, 等. NNW-ICE软件的三维结冰模型及精度验证[J]. 航空学报, 2024, 45(12): 129188.
|
|
CHEN N L, YI X, WANG Q, et al. Three-dimensional model for ice accretion in NNW-ICE software and validation of its precision[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(12): 129188 (in Chinese).
|
| [22] |
CHEN N L, YI X, WANG Q, et al. Numerical study on wind-driven thin water film runback on an airfoil[J]. AIAA Journal, 2023, 61(6): 2517-2525.
|
| [23] |
CHEN N L, YI X, WANG Q, et al. An analysis of heat transfer inside the ice layer and solid wall during ice accretion[J]. International Communications in Heat and Mass Transfer, 2022, 137: 106276.
|
| [24] |
ROWLEY C W. Model reduction for fluids, using ba-lanced proper orthogonal decomposition[J]. International Journal of Bifurcation and Chaos, 2005, 15(3): 997-1013.
|
| [25] |
BERKOOZ G, HOLMES P, LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual Review of Fluid Mechanics, 1993, 25: 539-575.
|
| [26] |
张钰, 刘建伟, 左信. 多任务学习[J]. 计算机学报, 2020, 43(7): 1340-1378.
|
|
ZHANG Y, LIU J W, ZUO X. Survey of multi-task learning[J]. Chinese Journal of Computers, 2020, 43(7): 1340-1378 (in Chinese).
|
| [27] |
ZHANG Y, YANG Q. A survey on multi-task learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(12): 5586-5609.
|
| [28] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[DB/OL]. arXiv preprint: 1706.03762, 2024.
|
| [29] |
MISRA I, SHRIVASTAVA A, GUPTA A, et al. Cross-stitch networks for multi-task learning[EB/OL]. [2025-02-05]. .
|
| [30] |
TANG H Y, LIU J N, ZHAO M, et al. Progressive layered extraction (PLE): A novel multi-task learning (MTL) model for personalized recommendations[C]∥Fourteenth ACM Conference on Recommender Systems. New York: ACM, 2020: 269-278.
|
| [31] |
赵志鹏. 基于改进深度多任务学习的滚动轴承故障预测方法研究[D]. 成都: 电子科技大学, 2023.
|
|
ZHAO Z P. Research on rolling bearing fault prediction method based on improved deep multi-task learning[D]. Chengdu: University of Electronic Science and Techno-logy of China, 2023 (in Chinese).
|
| [32] |
张大海, 孙锴, 倪平浩. 基于耦合关系挖掘及渐进式分层提取多任务学习网络的风-光-荷短期预测[J]. 电网技术, 2023, 47(9): 3537-3547.
|
|
ZHANG D H, SUN K, NI P H. Wind-photovoltaic-load short-term forecast based on coupling relation mining and progressive layered extraction of multi-task lear-ning network[J]. Power System Technology, 2023, 47(9): 3537-3547 (in Chinese).
|
| [33] |
MORENCY F, TEZOK F, PARASCHIVOIU I. Anti-icing system simulation using CANICE[J]. Journal of Aircraft, 1999, 36(6): 999-1006.
|