收稿日期:
2024-06-27
修回日期:
2024-07-22
接受日期:
2024-10-07
出版日期:
2024-10-11
发布日期:
2024-10-11
通讯作者:
罗越群
E-mail:13014106881@163.com
基金资助:
Yuequn LUO1(), Dali DING2, Mulai TAN1, Yidong LIU1, Huan ZHOU2
Received:
2024-06-27
Revised:
2024-07-22
Accepted:
2024-10-07
Online:
2024-10-11
Published:
2024-10-11
Contact:
Yuequn LUO
E-mail:13014106881@163.com
Supported by:
摘要:
自主机动决策是空空对抗的一项关键技术,对自主机动决策的研究涉及优化的机动动作求解方法。通过对自主机动决策方法的研究,可以提高无人作战飞机在空战对抗环境中自主做出机动决策的实时性和准确性,在促进无人作战飞机自主空战和有人/无人机协同空战等方面具有重要的理论研究意义和应用价值。当前,围绕数学求解、数据驱动、智能优化等理论及其应用进行了大量研究,对自主机动决策方法的研究及其应用有较大推动作用。首先阐述了无人作战飞机自主机动决策的基本概念;然后对机动决策方法的研究进展进行了述评,介绍了几种机动决策研究中常用的方法,对机动决策方法进行了分类和总结,并对几种典型机动决策方法在空战模拟对抗实验中的性能表现进行了比较;最后指出自主机动决策研究的难点和研究前景。
中图分类号:
罗越群, 丁达理, 谭目来, 刘屹东, 周欢. 无人作战飞机自主机动决策方法综述[J]. 航空学报, 2025, 46(7): 30877.
Yuequn LUO, Dali DING, Mulai TAN, Yidong LIU, Huan ZHOU. A review of autonomous maneuver decision methods for unmanned combat aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(7): 30877.
表 2
自主机动决策方法对比总结
类别 | 主要方法 | 优势 | 不足 |
---|---|---|---|
数学求解 | 微分博弈 | 数学描述清晰;求解直观,解释性好;适用于求解UCAV连续机动动作 | 计算量大,难以用于在线实时决策;只适用于简单对抗场景;难以同时考虑敌我双方的机动特征;难以处理不确定性信息 |
影响图博弈 | 建模和求解过程直观、解释性好;构建模型时可融入专家知识和飞行员经验;可扩展性好;适用于处理不确定空中对抗条件下的协同机动决策问题 | 似然函数难以确定;计算量大、计算复杂度高;难以满足决策实时性要求 | |
数据驱动 | 贝叶斯推理 | 充分利用先验空战经验;实现对飞行员决策思维拟合;具有清晰的机动决策模型结构;简单对抗场景下,机动决策模型具有一定的战场环境适应性;决策网络具备较强移植性 | 机动决策模型的参数设置受主观因素影响大;专家知识和飞行员经验提取难度大;决策模型对复杂对抗场景的适应性不足 |
强化学习 | 模型训练时不需要人工标注的数据;与战场环境的交互性好;具备持续学习能力;行动策略具有较强的鲁棒性;构建模型时可融入导弹攻击区、传感器探测范围等因素 | 难以融入领域专家知识和飞行员经验;奖励函数的设计缺乏统一的设计规范;泛化性不足;行动策略的可解释性差;决策模型训练时间过长 | |
深度强化学习 | 模型训练时不需要人工标注的数据;泛化性好;优化策略求解过程具有较强自主性;UCAV的行动策略序列具有一定的前瞻性;扩展性好;计算实时性较好 | 决策模型训练时间长、训练过程复杂;决策模型难以根据决策结果进行改进;机动决策模型初期效果表现不佳;训练数据获取难度大 | |
智能优化 | 遗传算法 | 易于与其他算法结合;鲁棒性和搜索性好;机动策略 可解释性好 | 态势评估模型设计环节受主观因素影响大;实时性不足;无法对没有显式目标函数的问题建模 |
专家系统 | 充分利用专家知识和飞行员经验;针对特定对抗场景求解速度快;具有可追溯性和较好的可解释性;有利于增强UCAV自主机动决策的稳定性和可信度;有助于提高空战机动策略模型训练效率 | 专家知识和飞行员经验难以表示为战术知识;泛化性不足;决策模型自学习能力不足;对抗场景复杂时,难以构建专家系统规则库;不具备自适应更新模型结构或参数的能力 | |
群智能算法 | 求解精度高;对动态空战对抗环境具有较好适应性;适用于UCAV在线实时机动决策 | 构建机动决策目标函数易受主观因素影响;可解释性不足;空战对抗过程中存在的干扰因素影响目标函数的求解 |
表 4
固定初始态势下不同类型方法在1对1空战中的性能对比
参数 | 矩阵对策 | HAMXCS | PPO |
---|---|---|---|
学习耗时/h | 168.98 | 106.32 | |
我机开火率/% | 25.60±3.43 | 84.67±4.03 | 87.27±4.31∗ |
敌机开火率/% | 1.16±1.09 | 10.93±3.47 | 3.80±2.18 |
我机存活率/% | 36.97±4.64 | 87.27±3.87 | 92.93±3.38∗ |
敌机存活率/% | 58.17±5.07 | 10.93±3.47 | 6.23±3.13 |
单个对局所需步数 | 259.47±267.62 | 313.38±224.29 | 152.69±165.07∗ |
单次决策耗时/ms | 82.16±135.64 | 1.43±1.42 | 0.78±0.79∗ |
1 | 孙智孝, 杨晟琦, 朴海音, 等. 未来智能空战发展综述[J]. 航空学报, 2021, 42(8): 525799. |
SUN Z X, YANG S Q, PIAO H Y, et al. A survey of air combat artificial intelligence[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525799 (in Chinese). | |
2 | 陈浩, 黄健, 刘权, 等. 自主空战机动决策技术研究进展与展望[J]. 控制理论与应用, 2023, 40(12): 2104-2129. |
CHEN H, HUANG J, LIU Q, et al. Review and prospects of autonomous air combat maneuver decisions[J].Journal of Control Theory and Applications, 2023, 40(12): 2104-2129 (in Chinese). | |
3 | DUAN H B, LEI Y Q, XIA J, et al. Autonomous maneuver decision for unmanned aerial vehicle via improved pigeon-inspired optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 3156-3170. |
4 | LIU Y F, QI N M, TANG Z W. Linear quadratic differential game strategies with two-pursuit versus single-evader[J]. Chinese Journal of Aeronautics, 2012, 25(6): 896-905. |
5 | PARK H, LEE B Y, TAHK M J, et al. Differential game based air combat maneuver generation using scoring function matrix[J]. International Journal of Aeronautical and Space Sciences, 2016, 17(2): 204-213. |
6 | WANG M L, WANG L X, YUE T, et al. Influence of unmanned combat aerial vehicle agility on short-range aerial combat effectiveness[J]. Aerospace Science and Technology, 2020, 96: 105534. |
7 | LÓPEZ N R, ŻBIKOWSKI R. Effectiveness of autonomous decision making for unmanned combat aerial vehicles in dogfight engagements[J]. Journal of Guidance,Control, and Dynamics, 2018, 41(4): 1021-1024. |
8 | LI S Y, CHEN M, WANG Y H, et al. Air combat decision-making of multiple UCAVs based on constraint strategy games[J]. Defence Technology, 2022, 18(3): 368-383. |
9 | VIRTANEN K, RAIVIO T, HAMALAINEN R P. Modeling pilot’s sequential maneuvering decisions by a multistage influence diagram[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(4): 665-677. |
10 | EKLUND J M, SPRINKLE J, SASTRY S S. Switched and symmetric pursuit/evasion games using online model predictive control with application to autonomous aircraft[J]. IEEE Transactions on Control Systems Technology, 2012, 20(3): 604-620. |
11 | HUANG C Q, DONG K S, HUANG H Q, et al. Autonomous air combat maneuver decision using Bayesian inference and moving horizon optimization[J]. Journal of Systems Engineering and Electronics, 2018, 29(1): 86-97. |
12 | MCGREW J S, HOW J P, WILLIAMS B, et al. Air-combat strategy using approximate dynamic programming[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(5): 1641-1654. |
13 | ZHANG H P, HUANG C Q. Maneuver decision-making of deep learning for UCAV thorough azimuth angles[J]. IEEE Access, 2020, 8: 12976-12987. |
14 | YANG Q M, ZHANG J D, SHI G Q, et al. Maneuver decision of UAV in short-range air combat based on deep reinforcement learning[J]. IEEE Access, 2020, 8: 363-378. |
15 | ERNEST N, CARROLL D, SCHUMACHER C, et al.Genetic fuzzy based artificial intelligence for unmanned combat aerial vehicle control in simulated air combat missions[J]. Journal of Defense Management, 2016, 6(1): 144. |
16 | DUAN H B, LI P, YU Y X. A predator-prey particle swarm optimization approach to multiple UCAV air combat modeled by dynamic game theory[J]. IEEE/CAA Journal of Automatica Sinica, 2015, 2(1): 11-18. |
17 | HAN T, WANG X F, LIANG Y J, et al. Study on UCAV robust maneuvering decision in automatic air combat based on target accessible domain[J]. Journal of Physics: Conference Series, 2019, 1213(5): 052004. |
18 | HO E, RAJAGOPALAN A, SKVORTSOV A, et al. Game theory in defence applications: A review[J]. Sensors, 2022, 22(3): 1032. |
19 | 钟友武, 杨凌宇, 柳嘉润, 等. 基于智能微分对策的自主机动决策方法研究[J]. 飞行力学, 2008, 26(6): 29-33. |
ZHONG Y W, YANG L Y, LIU J R, et al. Method of autonomous maneuver decision based on intelligent differential game[J]. Flight Dynamics,2008, 26(6): 29-33 (in Chinese). | |
20 | 王义宁, 姜玉宪. 空战决策中的智能微分对策法[J]. 飞行力学, 2003, 21(1): 66-70. |
WANG Y N, JIANG Y X. An intelligent differential gameon air combat decision[J]. Flight Dynamics, 2003, 21(1): 66-70 (in Chinese). | |
21 | LEE B Y, HAN S, PARK H J, et al. One-versus-one air-to-air combat maneuver generation based on the differential game[C]∥ Proceedings of the 2016 Congress of the International Council of the Aeronautical Sciences. ICAS, 2016: 1-7. |
22 | HORIE K, CONWAY B A. Optimal fighter pursuit-evasion maneuvers found via two-sided optimization[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(1): 105-112. |
23 | XU G Y, WEI S N, ZHANG H M. Application of situation function in air combat differential games[C]∥ 2017 36th Chinese Control Conference (CCC). Piscataway: IEEE Press, 2017: 5865-5870. |
24 | GARCIA E, MOLLA V, CASBEER D W, et al. Strategies for defending a coastline against multiple attackers[C]∥ 2019 IEEE 58th Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2019: 7319-7324. |
25 | VIRTANEN K, KARELAHTI J, RAIVIO T. Modeling air combat by a moving horizon influence diagram game[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(5): 1080-1091. |
26 | ZHONG L, TONG M A, ZHONG W, et al. Sequential maneuvering decisions based on multi-stage influence diagram in air combat[J]. Journal of Systems Engineering and Electronics, 2007, 18(3): 551-555. |
27 | LU H C, WU B Y, CHEN J Q. Fighter equipment contribution evaluation based on maneuver decision[J]. IEEE Access, 2021, 9: 132241-132254. |
28 | PAN Q, ZHOU D Y, HUANG J C, et al. Maneuver decision for cooperative close-range air combat based on state predicted influence diagram[C]∥ 2017 IEEE International Conference on Information and Automation (ICIA). Piscataway: IEEE Press, 2017: 726-731. |
29 | ZHOU S Y, WANG Z J, FAN G, et al. Collaborative maneuvering decision based on multi-layer influence diagram group decision-making[M]∥ Advances in Transdisciplinary Engineering. Netherlands: IOS Press, 2024:345-357. |
30 | 钟麟, 佟明安, 钟卫. 影响图对策在多机协同空战中的应用[J]. 北京航空航天大学学报, 2007, 33(4): 450-453. |
ZHONG L, TONG M A, ZHONG W. Application of multistage influence diagram game theory for multiple cooperative air combat[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(4): 450-453 (in Chinese). | |
31 | GENG W X, KONG F E, MA D Q. Study on tactical decision of UAV medium-range air combat[C]∥ The 26th Chinese Control and Decision Conference (2014 CCDC). Piscataway: IEEE Press, 2014: 135-139. |
32 | WANG X F, WANG B S. Situation assessment method based on Bayesian network and intuitionistic fuzzy reasoning[J]. System Engineering and Electronics, 2009, 31(11): 2742-2746. |
33 | 刘守业. 非完备信息下无人机空战决策与导引方法研究[D]. 沈阳: 沈阳航空航天大学, 2022: 3-28. |
LIU S Y. Decision-making and guidance method of unmanned aerial vehicle under incomplete information[D]. Shenyang: Shenyang Aerospace University, 2022: 3-28 (in Chinese). | |
34 | PIAO H Y, SUN Z X, MENG G L, et al. Beyond-visual-range air combat tactics auto-generation by reinforcement learning[C]∥ 2020 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE Press, 2020: 1-8. |
35 | 张强, 杨任农, 俞利新, 等. 基于Q-network强化学习的超视距空战机动决策[J]. 空军工程大学学报, 2018, 19(6): 8-14. |
ZHANG Q, YANG R N, YU L X, et al. BVR air combat maneuvering decision by using Q-network reinforcement learning[J]. Journal of Air Force Engineering University, 2018, 19(6): 8-14 (in Chinese). | |
36 | YANG Q M, ZHU Y, ZHANG J D, et al. UAV air combat autonomous maneuver decision based on DDPG algorithm[C]∥ 2019 IEEE 15th International Conference on Control and Automation (ICCA). Piscataway: IEEE Press, 2019: 37-42. |
37 | KONG W R, ZHOU D Y, YANG Z, et al. UAV autonomous aerial combat maneuver strategy generation with observation error based on state-adversarial deep deterministic policy gradient and inverse reinforcement learning[J]. Electronics, 2020, 9(7): 1121. |
38 | 黄长强, 赵克新, 韩邦杰, 等. 一种近似动态规划的无人机机动决策方法[J]. 电子与信息学报, 2018, 40(10): 2447-2452. |
HUANG C Q, ZHAO K X, HAN B J, et al. Maneuvering decision-making method of UAV based on approximate dynamic programming[J]. Journal of Electronics & Information Technology, 2018, 40(10): 2447-2452 (in Chinese). | |
39 | MA Y F, MA X L, SONG X. A case study on air combat decision using approximated dynamic programming[J]. Mathematical Problems in Engineering, 2014(4): 183401. |
40 | 梅丹, 刘锦涛, 高丽. 基于近似动态规划与零和博弈的空战机动决策[J]. 兵工自动化, 2017, 36(3): 35-39. |
MEI D, LIU J T, GAO L. Maneuver decision of air combat based on approximate dynamic programming and zero-sum game[J]. Ordnance Industry Automation, 2017, 36(3): 35-39 (in Chinese). | |
41 | HU Z C, GAO P, WANG F. Research on autonomous maneuvering decision of UCAV based on approximate dynamic programming[C]∥ 2019 International Conference on Image and Video Processing, and Artificial Intelligence. NewYork: SPIE, 2019: 636-641. |
42 | 姜龙亭, 寇雅楠, 王栋, 等. 改进近似动态规划法的攻击占位决策[J]. 火力与指挥控制, 2019, 44(7): 135-141. |
JIANG L T, KOU Y N, WANG D, et al. Attack placeholder decision based on improved approximate dynamic programming[J]. Fire Control & Command Control, 2019, 44(7): 135-141 (in Chinese). | |
43 | CRUMPACKER J B, ROBBINS M J, JENKINS P R. An approximate dynamic programming approach for solving an air combat maneuvering problem[J]. Expert Systems with Applications, 2022, 203: 117448. |
44 | ARULKUMARAN K, DEISENROTH M P, BRUNDAGE M, et al. Deep reinforcement learning: A brief survey[J]. IEEE Signal Processing Magazine, 2017, 34(6): 26-38. |
45 | SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529: 484-489. |
46 | SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of Go without human knowledge[J]. Nature, 2017, 550: 354-359. |
47 | VINYALS O, BABUSCHKIN I, CZARNECKI W M, et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning[J]. Nature, 2019, 575: 350-354. |
48 | BERNER C, BROCKMAN G, CHAN B, et al. Dota 2 with large scale deep reinforcement learning[DB/OL]. arXiv preprint: 1912.06680, 2019. |
49 | NGUYEN T T, NGUYEN N D, NAHAVANDI S. Deep reinforcement learning for multiagent systems: A review of challenges, solutions, and applications[J]. IEEE Transactions on Cybernetics, 2020, 50(9): 3826-3839. |
50 | LYU L, SHEN Y, ZHANG S C. The advance of reinforcement learning and deep reinforcement learning[C]∥ 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA). Piscataway: IEEE Press, 2022: 644-648. |
51 | SARKAR N I, GUL S. Artificial intelligence-based autonomous UAV networks: A survey[J]. Drones, 2023, 7(5): 322. |
52 | BAYERLEIN H, THEILE M, CACCAMO M, et al. Multi-UAV path planning for wireless data harvesting with deep reinforcement learning[J]. IEEE Open Journal of the Communications Society, 2021, 2: 1171-1187. |
53 | ZHU B T, BEDEER E, NGUYEN H H, et al. UAV trajectory planning in wireless sensor networks for energy consumption minimization by deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 9540-9554. |
54 | WANG X, CHEN Y D, ZHU W W. A survey on curriculum learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 4555-4576. |
55 | WANG Y B, JIANG T S, LI Y J. A hierarchical reinforcement learning method on multi UCAV air combat[C]∥ 2021 International Conference on Neural Networks, Information and Communication Engineering. New York: SPIE, 2021, 11933: 117-123. |
56 | WANG L, WANG K Z, PAN C H, et al. Multi-agent deep reinforcement learning-based trajectory planning for multi-UAV assisted mobile edge computing[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(1): 73-84. |
57 | ZHAO W L, MENG Z J, WANG K P, et al. Hierarchical active tracking control for UAVs via deep reinforcement learning[J]. Applied Sciences, 2021, 11(22): 10595. |
58 | LI B H, WU Y J. Path planning for UAV ground target tracking via deep reinforcement learning[J]. IEEE Access, 2020, 8: 29064-29074. |
59 | LI B, GAN Z G, CHEN D Q, et al. UAV maneuvering target tracking in uncertain environments based on deep reinforcement learning and meta-learning[J]. Remote Sensing, 2020, 12(22): 3789. |
60 | LI Y, HAN W, WANG Y Q. Deep reinforcement learning with application to air confrontation intelligent decision-making of manned/unmanned aerial vehicle cooperative system[J]. IEEE Access, 2020, 8: 67887-67898. |
61 | WU L Z, WANG C, ZHANG P P, et al. Deep reinforcement learning with corrective feedback for autonomous UAV landing on a mobile platform[J]. Drones, 2022, 6(9): 238. |
62 | XIE J Y, PENG X D, WANG H J, et al. UAV autonomous tracking and landing based on deep reinforcement learning strategy[J]. Sensors, 2020, 20(19): 5630. |
63 | XU D, GUO Y X, YU Z Y, et al. PPO-Exp: Keeping fixed-wing UAV formation with deep reinforcement learning[J]. Drones, 2022, 7(1): 28. |
64 | ZHAO W W, CHU H R, MIAO X K, et al. Research on the multiagent joint proximal policy optimization algorithm controlling cooperative fixed-wing UAV obstacle avoidance[J]. Sensors, 2020, 20(16): 4546. |
65 | ZHAO Y, CHEN Y F, ZHEN Z Y, et al. Multi-weapon multi-target assignment based on hybrid genetic algorithm in uncertain environment[J]. International Journal of Advanced Robotic Systems, 2020, 17(2): 1729881420905922. |
66 | ZHAO X R, YANG R N, ZHANG Y, et al. Deep reinforcement learning for intelligent dual-UAV reconnaissance mission planning[J]. Electronics, 2022, 11(13): 2031. |
67 | YUE L F, YANG R N, ZHANG Y, et al. Deep reinforcement learning for UAV intelligent mission planning[J]. Complexity, 2022(1): 3551508. |
68 | GUO T, JIANG N, LI B Y, et al. UAV navigation in high dynamic environments: A deep reinforcement learning approach[J]. Chinese Journal of Aeronautics, 2021, 34(2): 479-489. |
69 | HU J W, WANG L H, HU T M, et al. Autonomous maneuver decision making of dual-UAV cooperative air combat based on deep reinforcement learning[J]. Electronics, 2022, 11(3): 467. |
70 | WANG X W, WANG Y H, SU X C, et al. Deep reinforcement learning-based air combat maneuver decision-making: Literature review, implementation tutorial and future direction[J]. Artificial Intelligence Review, 2023, 57(1): 1. |
71 | CAO Y, KOU Y X, LI Z W, et al. Autonomous maneuver decision of UCAV air combat based on double deep Q network algorithm and stochastic game theory[J]. International Journal of Aerospace Engineering, 2023(1): 3657814. |
72 | ZHANG X B, LIU G Q, YANG C J, et al. Research on air confrontation maneuver decision-making method based on reinforcement learning[J]. Electronics, 2018, 7(11): 279. |
73 | PIAO H Y, HAN Y, CHEN H C, et al. Complex relationship graph abstraction for autonomous air combat collaboration: A learning and expert knowledge hybrid approach[J]. Expert Systems with Applications, 2023, 215: 119285. |
74 | SUN Z X, PIAO H Y, YANG Z, et al. Multi-agent hierarchical policy gradient for air combat tactics emergence via self-play[J]. Engineering Applications of Artificial Intelligence, 2021, 98: 104112. |
75 | LI Y F, SHI J P, JIANG W, et al. Autonomous maneuver decision-making for a UCAV in short-range aerial combat based on an MS-DDQN algorithm[J]. Defence Technology, 2022, 18(9): 1697-1714. |
76 | ZHANG H P, ZHOU H, WEI Y J, et al. Autonomous maneuver decision-making method based on reinforcement learning and Monte Carlo tree search[J]. Frontiers in Neurorobotics, 2022, 16: 996412. |
77 | YANG K B, DONG W H, CAI M, et al. UCAV air combat maneuver decisions based on a proximal policy optimization algorithm with situation reward shaping[J]. Electronics, 2022, 11(16): 2602. |
78 | ZHENG Z Q, DUAN H B. UAV maneuver decision-making via deep reinforcement learning for short-range air combat[J]. Intelligence & Robotics, 2023, 3(1): 76-94. |
79 | 杨书恒, 张栋, 熊威, 等. 基于可解释性强化学习的空战机动决策方法[J]. 航空学报, 2024, 45(18): 329922. |
YANG S H, ZHANG D, XIONG W, et al. Decision-making method for air combat maneuver based on explainable reinforcement learning[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(18): 329922 (in Chinese). | |
80 | 谢建峰, 杨啟明, 戴树岭, 等. 基于强化遗传算法的无人机空战机动决策研究[J]. 西北工业大学学报, 2020, 38(6): 1330-1338. |
XIE J F, YANG Q M, DAI S L, et al. Air combat maneuver decision based on reinforcement genetic algorithm[J]. Journal of Northwestern Polytechnical University, 2020, 38(6): 1330-1338 (in Chinese). | |
81 | 周德云, 李锋, 蒲小勃, 等. 基于遗传算法的飞机战术飞行动作决策[J]. 西北工业大学学报, 2002, 20(1): 109-112. |
ZHOU D Y, LI F, PU X B, et al. On improving tactical planning in air combat in P.R.China with genetic algorithm[J]. Journal of Northwestern Polytechnical University, 2002, 20(1): 109-112 (in Chinese). | |
82 | 王杰, 丁达理, 董康生, 等. UCAV自主空战战术机动动作建模与轨迹生成[J]. 火力与指挥控制, 2018, 43(12): 42-49. |
WANG J, DING D L, DONG K S, et al. UCAV autonomous air combat tactical maneuvering modeling and trajectory generation[J]. Fire Control & Command Control, 2018, 43(12): 42-49 (in Chinese). | |
83 | 张涛, 于雷, 周中良, 等. 基于变权重伪并行遗传算法的空战机动决策[J]. 飞行力学, 2012, 30(5): 470-474. |
ZHANG T, YU L, ZHOU Z L, et al. Decision-making for aircombat maneuvering based on variable weight pseudo-parallel genetical algorithm[J]. Flight Dynamics, 2012, 30(5): 470-474 (in Chinese). | |
84 | BURGIN G H, SIDOR L B. Rule-based air combat simulation: NASA-CR-4160[R]. Washington,D.C.: National Aeronautics and Space Administration, 1988. |
85 | 王锐平, 高正红. 无人机空战仿真中基于机动动作库的决策模型[J]. 飞行力学, 2009, 27(6): 72-75, 79. |
WANG R P, GAO Z H. Research on decision system in air combat simulation using maneuver library[J]. Flight Dynamics, 2009, 27(6): 72-75, 79 (in Chinese). | |
86 | 王刚, 雷英杰, 何晶. 空战决策指挥引导专家系统[J]. 空军工程大学学报(自然科学版), 2002, 3(1): 11-13. |
WANG G, LEI Y J, HE J. Interception guidance expert system for airfight decision[J]. Journal of Air Force Engineering University (Natural Science Edition), 2002, 3(1): 11-13 (in Chinese). | |
87 | 谭目来, 丁达理, 谢磊, 等. 基于模糊专家系统与IDE算法的UCAV逃逸机动决策[J]. 系统工程与电子技术, 2022, 44(6): 1984-1993. |
TAN M L, DING D L, XIE L, et al. UCAV escape maneuvering decision based on fuzzy expert system and IDE algorithm[J]. Systems Engineering and Electronics, 2022, 44(6): 1984-1993 (in Chinese). | |
88 | QIAN C X, ZHANG X B, LI L, et al. H3E: Learning air combat with a three-level hierarchical framework embedding expert knowledge[J]. Expert Systems with Applications, 2024, 245: 123084. |
89 | CHAI R Q, TSOURDOS A, SAVVARIS A, et al. Solving constrained trajectory planning problems using biased particle swarm optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(3): 1685-1701. |
90 | RUAN W Y, DUAN H B, DENG Y M. Autonomous maneuver decisions via transfer learning pigeon-inspired optimization for UCAVs in dogfight engagements[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(9): 1639-1657. |
91 | TAN M L, TANG A D, DING D L, et al. Autonomous air combat maneuvering decision method of UCAV based on LSHADE-TSO-MPC under enemy trajectory prediction[J]. Electronics, 2022, 11(20): 3383. |
[1] | 吴光辉, 王景, 谢海润, 马涂亮, 苗强, 向纪鑫, 张淼. 数据与知识联合赋能的民机智能气动设计[J]. 航空学报, 2025, 46(5): 531485-531485. |
[2] | 曾宇, 汪洪波, 连城阅, 杨揖心, 熊大鹏, 孙明波, 刘卫东. 两种SST湍流模型改进方法适用性分析[J]. 航空学报, 2024, 45(S1): 730574-730574. |
[3] | 周大鹏, 曲晓雷. 基于知识引导智能鸽群优化的舰载机着舰控制[J]. 航空学报, 2024, 45(S1): 730801-730801. |
[4] | 王琪, 武龙, 刘振, 刘建霞, 夏凉. 热弹性多构型梯度点阵结构拓扑优化设计[J]. 航空学报, 2024, 45(23): 230367-230367. |
[5] | 高天贺, 田阔, 黄蕾, 张澍, 李增聪. 数据驱动的曲面构件形状⁃拓扑协同优化方法[J]. 航空学报, 2024, 45(2): 428806-428806. |
[6] | 姬田园, 楚武利, 张皓光, 郭正涛, 孟德君. 基于数据驱动的扭转度偏差对压气机性能的影响[J]. 航空学报, 2024, 45(19): 629938-629938. |
[7] | 李文韬, 方峰, 王振亚, 朱奕超, 彭冬亮. 引入混合超网络改进MADDPG的双机编队空战自主机动决策[J]. 航空学报, 2024, 45(17): 529460-529460. |
[8] | 董立卓, 张思琪, 张钊, 吴宝海. 机理⁃数据混合驱动的叶片加工变形预测方法[J]. 航空学报, 2024, 45(13): 629037-629037. |
[9] | 杨倩, 王彦哲, 杨迪, 李泽众, 曲巍崴. 基于数据驱动的纤维增强复合材料自动铺放速度预测与规划[J]. 航空学报, 2024, 45(10): 429313-429313. |
[10] | 马金毅, 王灿, 薛涛, 艾剑良, 董一群. 空战格斗飞行机动数据库建立及应用[J]. 航空学报, 2023, 44(S1): 727538-727538. |
[11] | 崔西明, 邱志鹏, 魏嘉, 张弛, 宋凯, 李喆, 王树鹏. 基于数据驱动的结构钢表面应力磁巴克豪森噪声表征方法[J]. 航空学报, 2023, 44(8): 427237-427237. |
[12] | 王浩浩, 高丽敏, 杨光, 吴宝海. 一种鲁棒的数据驱动不确定性量化方法及在压气机叶栅中的应用[J]. 航空学报, 2023, 44(17): 128169-128169. |
[13] | 尧少波, 蒋励剑, 赵文文, 卢铮, 吴昌聚, 陈伟芳. 耦合聚类的数据驱动稀薄流非线性本构计算方法[J]. 航空学报, 2022, 43(S2): 40-53. |
[14] | 陈博, 岳凯, 王如生, 胡明南. 基于学习策略的多速率多传感器融合定位方法[J]. 航空学报, 2022, 43(S1): 726904-726904. |
[15] | 朱炳杰, 杨希祥, 宗建安, 邓小龙. 分布式混合电推进飞行器技术[J]. 航空学报, 2022, 43(7): 25556-025556. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学