李坤1,2(), 左春林1,2, 廖若冰1,2, 吉辰1,2, 蒋斌3, 潘复生3
收稿日期:
2023-07-28
修回日期:
2023-09-04
接受日期:
2024-01-16
出版日期:
2024-06-25
发布日期:
2024-01-24
通讯作者:
李坤
E-mail:kun.li@cqu.edu.cn
基金资助:
Kun LI1,2(), Chunlin ZUO1,2, Ruobing LIAO1,2, Chen JI1,2, Bin JIANG3, Fusheng PAN3
Received:
2023-07-28
Revised:
2023-09-04
Accepted:
2024-01-16
Online:
2024-06-25
Published:
2024-01-24
Contact:
Kun LI
E-mail:kun.li@cqu.edu.cn
Supported by:
摘要:
增材制造铝合金构件在制造过程中产生的残余应力已成为影响其性能的关键因素。全面了解导致残余应力形成的潜在机制并制定有效的预测和控制策略,对提高铝合金部件的结构性能至关重要。本文系统地阐述了增材制造铝合金残余应力领域的最新研究进展。首先,讨论了残余应力在增材制造铝合金性能方面的影响,包括对缺陷、组织及机械性能的影响;其次,分析了残余应力的产生机制,涉及复杂的热应力场与显微组织演变;同时,审查了影响残余应力的各种因素,发现其主要与构件结构和制造工艺有关;然后,探讨了多种先进检测技术的应用情况,包括X射线衍射法、中子衍射法等;此外,综述了基于精确模型的预测方法及表面处理等调控策略对改善构件残余应力方面的效果。最后,总结并展望了增材制造铝合金残余应力的发展趋势和方向。
中图分类号:
李坤, 左春林, 廖若冰, 吉辰, 蒋斌, 潘复生. 增材制造铝合金残余应力研究现状及展望[J]. 航空学报, 2024, 45(12): 29380-029380.
Kun LI, Chunlin ZUO, Ruobing LIAO, Chen JI, Bin JIANG, Fusheng PAN. Current status and prospects of research on residual stress in additive manufacturing of Al alloys[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(12): 29380-029380.
1 | 卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4): 1-4. |
LU B H, LI D C. Development of the additive manufacturing (3D printing) technology[J]. Machine Building & Automation, 2013, 42(4): 1-4 (in Chinese). | |
2 | ZHAN J B, WU J Z, MA R J, et al. Effect of microstructure on the superelasticity of high-relative-density Ni-rich NiTi alloys fabricated by laser powder bed fusion[J]. Journal of Materials Processing Technology, 2023, 317: 117988. |
3 | DEBROY T, WEI H L, ZUBACK J S, et al. Additive manufacturing of metallic components—Process, structure and properties[J]. Progress in Materials Science, 2018, 92: 112-224. |
4 | 刘婷, 朱宇, 胡晓, 等. 超声增材制造在航空航天领域的应用进展[J]. 材料导报, 2023, 37(2): 140-147. |
LIU T, ZHU Y, HU X, et al. Advances in the research of ultrasonic additive manufacturing in aerospace field[J]. Materials Reports, 2023, 37(2): 140-147 (in Chinese). | |
5 | BLAKEY-MILNER B, GRADL P, SNEDDEN G, et al. Metal additive manufacturing in aerospace: A review[J]. Materials & Design, 2021, 209: 110008. |
6 | MENG L, ZHANG W H, QUAN D L, et al. From topology optimization design to additive manufacturing: Today’s success and tomorrow’s roadmap[J]. Archives of Computational Methods in Engineering, 2020, 27(3): 805-830. |
7 | 李涤尘, 鲁中良, 田小永, 等. 增材制造—面向航空航天制造的变革性技术[J]. 航空学报, 2022, 43(4): 525387. |
LI D C, LU Z L, TIAN X Y, et al. Additive manufacturing—Revolutionary technology for leading aerospace manufacturing[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 525387 (in Chinese). | |
8 | 郜庆伟, 赵健, 舒凤远, 等. 铝合金增材制造技术研究进展[J]. 材料工程, 2019, 47(11): 32-42. |
GAO Q W, ZHAO J, SHU F Y, et al. Research progress in aluminum alloy additive manufacturing[J]. Journal of Materials Engineering, 2019, 47(11): 32-42 (in Chinese). | |
9 | SRINIVASAN D, ANANTH K. Recent advances in alloy development for metal additive manufacturing in gas turbine/aerospace applications: A review[J]. Journal of the Indian Institute of Science, 2022, 102(1): 311-349. |
10 | 张春杰, 齐超琪, 赵凯, 等. 大型航空航天铝合金承力构件增材制造技术[J]. 电焊机, 2021, 51(8): 39-54, 177. |
ZHANG C J, QI C Q, ZHAO K, et al. Additive manufacturing technology for large load-carrying component of aluminum alloy in aeronautics and astronautics[J]. Electric Welding Machine, 2021, 51(8): 39-54, 177 (in Chinese). | |
11 | 孙世杰. 英国克兰菲尔德大学使用增材制造技术制作大型金属结构件[J]. 粉末冶金工业, 2017, 27(2): 46. |
SUN S J. Cranfield University in the United Kingdom uses additive manufacturing technology to manufacture large metal structures[J]. Powder Metallurgy Industry, 2017, 27(2): 46 (in Chinese). | |
12 | ZHAO H, DEBROY T. Weld metal composition change during conduction mode laser welding of aluminum alloy 5182[J]. Metallurgical and Materials Transactions B, 2001, 32(1): 163-172. |
13 | MUNTHER M, MARTIN T, TAJYAR A, et al. Laser shock peening and its effects on microstructure and properties of additively manufactured metal alloys: A review[J]. Engineering Research Express, 2020, 2(2): 022001. |
14 | XU R, LI R D, YUAN T C, et al. Microstructure, metallurgical defects and hardness of Al⁃Cu⁃Mg⁃Li⁃Zr alloy additively manufactured by selective laser melting[J]. Journal of Alloys and Compounds, 2020, 835: 155372. |
15 | 陈建钧, 庞栋天, 周伟民, 等. 激光熔丝增材制造试件的残余应力分布及其疲劳寿命研究[J/OL]. 热加工工艺, (2023-02-26) [2023-04-25]. . |
CHEN J J, PANG D T, ZHOU W M, et al. Study on residual stress distribution and fatigue life of laser fuse additive manufacturing part[J/OL]. Hot Working Technology, (2023-02-26) [2023-04-25]. (in Chinese). | |
16 | CHEN S G, GAO H J, ZHANG Y D, et al. Review on residual stresses in metal additive manufacturing: Formation mechanisms, parameter dependencies, prediction and control approaches[J]. Journal of Materials Research and Technology, 2022, 17: 2950-2974. |
17 | LUO H Y, SUN X, XU L, et al. A review on stress determination and control in metal-based additive manufacturing[J]. Theoretical and Applied Mechanics Letters, 2023, 13(1): 100396. |
18 | ZHANG X X, ANDRÄ H, HARJO S, et al. Quantifying internal strains, stresses, and dislocation density in additively manufactured AlSi10Mg during loading-unloading-reloading deformation[J]. Materials & Design, 2021, 198: 109339. |
19 | CHEN S J, XU M, YUAN T, et al. Thermal⁃microstructural analysis of the mechanism of liquation cracks in wire-arc additive manufacturing of Al⁃Zn⁃Mg⁃Cu alloy[J]. Journal of Materials Research and Technology, 2022, 16: 1260-1271. |
20 | KOU S. Welding metallurgy[M]. New York: Wiley, 2002. |
21 | KANNAN R, LEE Y, PIERCE D, et al. Additive manufacturing as a processing route for steel-aluminum bimetallic structures[J]. Materials & Design, 2023, 231: 112003. |
22 | 张兴寿, 王勤英, 郑淮北, 等. 激光增材制造合金材料残余应力及应力腐蚀研究现状[J]. 激光与光电子学进展, 2022, 59(13): 22-31. |
ZHANG X S, WANG Q Y, ZHENG H B, et al. Residual stress and stress corrosion of alloy materials in laser additive manufacturing[J]. Laser & Optoelectronics Progress, 2022, 59(13): 22-31 (in Chinese). | |
23 | UJJWAL K, AL-SAADI S, KUMAR DAS A, et al. Corrosion and stress corrosion cracking characteristics of 4043 aluminium alloy fabricated through directed energy deposition process[J]. Journal of Alloys and Compounds, 2024, 976: 173154. |
24 | 奥妮, 何子昂, 吴圣川, 等. 激光增材制造AlSi10Mg合金的力学性能研究进展[J]. 焊接学报, 2022, 43(9): 1-19, 113. |
AO N, HE Z A, WU S C, et al. Recent progress on the mechanical properties of laser additive manufacturing AlSi10Mg alloy[J]. Transactions of the China Welding Institution, 2022, 43(9): 1-19, 113 (in Chinese). | |
25 | 吴圣川, 胡雅楠, 杨冰, 等. 增材制造材料缺陷表征及结构完整性评定方法研究综述[J]. 机械工程学报, 2021, 57(22): 3-34. |
WU S C, HU Y N, YANG B, et al. Review on defect characterization and structural integrity assessment method of additively manufactured materials[J]. Journal of Mechanical Engineering, 2021, 57(22): 3-34 (in Chinese). | |
26 | GAO S, GENG S N, JIANG P, et al. Numerical study on the effect of residual stress on mechanical properties of laser welds of aluminum alloy 2024[J]. Optics & Laser Technology, 2022, 146: 107580. |
27 | CHEN S Q, TAN Q Y, GAO W Q, et al. Effect of heat treatment on the anisotropy in mechanical properties of selective laser melted AlSi10Mg[J]. Materials Science and Engineering: A, 2022, 858: 144130. |
28 | MFUSI, MATHE, TSHABALALA, et al. The effect of stress relief on the mechanical and fatigue properties of additively manufactured AlSi10Mg parts[J]. Metals, 2019, 9(11): 1216. |
29 | SMUDDE C M, D’ELIA C R, MARCHI C W SAN, et al. The influence of residual stress on fatigue crack growth rates of additively manufactured Type 304L stainless steel[J]. International Journal of Fatigue, 2022, 162: 106954. |
30 | BERETTA S, GARGOURIMOTLAGH M, FOLETTI S, et al. Fatigue strength assessment of “as built” AlSi10Mg manufactured by SLM with different build orientations[J]. International Journal of Fatigue, 2020, 139: 105737. |
31 | FATEMI A, SHAMSAEI N. Multiaxial fatigue: An overview and some approximation models for life estimation[J]. International Journal of Fatigue, 2011, 33(8): 948-958. |
32 | SAUSTO F, CARRION P E, SHAMSAEI N, et al. Fatigue failure mechanisms for AlSi10Mg manufactured by L-PBF under axial and torsional loads: The role of defects and residual stresses[J]. International Journal of Fatigue, 2022, 162: 106903. |
33 | PAN X L, ZHOU L C, WANG C X, et al. Microstructure and residual stress modulation of 7075 aluminum alloy for improving fatigue performance by laser shock peening[J]. International Journal of Machine Tools and Manufacture, 2023, 184: 103979. |
34 | 宋承宇. 激光增材制造6061铝合金性能的数值模拟与实验研究[D]. 烟台: 烟台大学, 2023. |
SONG C Y. Numerical simulation and experimental study of the properties of 6061 aluminum alloy by laser additive manufacturing[D].Yantai: Yantai University, 2023 (in Chinese). | |
35 | SCHUH C, DUNAND D C. Internal stress plasticity due to chemical stresses[J]. Acta Materialia, 2001, 49(17): 3387-3400. |
36 | LEE J S, KIM J H, KIM S S. Evolution of grains to relieve additional compressive stress developed in Al⁃Mg alloy films during thermal annealing[J]. Thin Solid Films, 2015, 595: 148-152. |
37 | SUN J M, HENSEL J, KÖHLER M, et al. Residual stress in wire and arc additively manufactured aluminum components[J]. Journal of Manufacturing Processes, 2021, 65: 97-111. |
38 | MIRKOOHI E, LIANG S Y. Microstructure affected residual stress in direct metal deposition[C]∥ Proceedings of ASME 2020 15th International Manufacturing Science and Engineering Conference. New York: ASME, 2021: 84256. |
39 | LI K, CHEN W, GONG N, et al. A critical review on wire-arc directed energy deposition of high-performance steels[J]. Journal of Materials Research and Technology, 2023, 24: 9369-9412. |
40 | FANG Z C, WU Z L, HUANG C G, et al. Review on residual stress in selective laser melting additive manufacturing of alloy parts[J]. Optics Laser Technology, 2020, 129: 106283. |
41 | LI C, LIU Z Y, FANG X, et al. Residual stress in metal additive manufacturing[J]. Procedia CIRP, 2018, 71: 348-353. |
42 | 杜洋, 乔凤斌, 郭立杰, 等. AlSi10Mg粉末激光选区熔化残余应力场数值模拟[J]. 电焊机, 2019, 49(1): 103-109. |
DU Y, QIAO F B, GUO L J, et al. Numerical simulation of selective laser melting residual stress field of AlSi10Mg powder[J]. Electric Welding Machine, 2019, 49(1): 103-109 (in Chinese). | |
43 | SALMI A, ATZENI E. History of residual stresses during the production phases of AlSi10Mg parts processed by powder bed additive manufacturing technology[J]. Virtual and Physical Prototyping, 2017, 12(2): 153-160. |
44 | 王梦瑶, 朱海红, 祁婷, 等. 选区激光熔化成形Al-Si合金及其裂纹形成机制研究[J]. 激光技术, 2016, 40(2): 219-222. |
WANG M Y, ZHU H H, QI T, et al. Selective laser melting Al-Si aluminum alloy and the crack formation mechanism[J]. Laser Technology, 2016, 40(2): 219-222 (in Chinese). | |
45 | DOUMENC G, COURANT B, COUTURIER L, et al. Investigation of residual stresses and modeling of tensile deformation in wire-arc additive manufactured 6061 aluminum alloy: Diffraction and elastoplastic self-consistent model[J]. Materials Science and Engineering: A, 2024, 890: 145891. |
46 | SALMI A, ATZENI E. Residual stress analysis of thin AlSi10Mg parts produced by laser powder bed fusion[J]. Virtual and Physical Prototyping, 2020, 15(1): 49-61. |
47 | NI Z D, DONG B L, LIN S B, et al. Numerical analysis on stress evolution during GTA-additive manufacturing of thin-walled aluminum alloys[J]. Journal of Physics: Conference Series, 2018, 1063: 012083. |
48 | 葛芃, 张昭, 张少颜, 等. 圆环构件增材制造残余应力模拟及尺寸效应分析[J]. 塑性工程学报, 2019, 26(5): 249-255. |
GE P, ZHANG Z, ZHANG S Y, et al. Numerical modeling of residual stress in circular component in additive manufacturing and scaling effect analysis[J]. Journal of Plasticity Engineering, 2019, 26(5): 249-255 (in Chinese). | |
49 | 高月华, 段景体, 刘其鹏, 等. 同轴送粉激光增材制造中基板预热对残余应力的影响[J]. 大连交通大学学报, 2022, 43(6): 50-56. |
GAO Y H, DUAN J T, LIU Q P, et al. Effect of substrate preheating on residual stress in coaxial powder feeding laser additive manufacturing[J]. Journal of Dalian Jiaotong University, 2022, 43(6): 50-56 (in Chinese). | |
50 | JING H, GE P, ZHANG Z, et al. Numerical studies of the effects of the substrate structure on the residual stress in laser directed energy additive manufacturing of thin-walled products[J]. Metals, 2022, 12(3): 462. |
51 | BUCHBINDER D, MEINERS W, PIRCH N, et al. Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting[J]. Journal of Laser Applications, 2014, 26(1): 012004. |
52 | SULAIMAN M R, YUSOF F, JAMALUDIN M F BIN. Effect of support structure design on the part built using selective laser melting[C]∥ Advances in Material Sciences and Engineering. Singapore: Springer, 2020: 275-286. |
53 | XU S Z, LIU J K, MA Y S. Residual stress constrained self-support topology optimization for metal additive manufacturing[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 389: 114380. |
54 | WU H, FAHY W P, KIM S, et al. Recent developments in polymers/polymer nanocomposites for additive manufacturing[J]. Progress in Materials Science, 2020, 111: 100638. |
55 | CARPENTER K, TABEI A. On residual stress development, prevention, and compensation in metal additive manufacturing[J]. Materials, 2020, 13(2): 255. |
56 | 孙金娥, 贺亚飞. SLM成形Al-Mg-Li-Cu合金残余应力及组织性能[J]. 特种铸造及有色合金, 2023, 43(3): 313-317. |
SUN J E, HE Y F. Residual stress, microstructure and properties of SLM-formed Al-Mg-Li-Cu alloy[J]. Special Casting & Nonferrous Alloys, 2023, 43(3): 313-317 (in Chinese). | |
57 | LU X F, CERVERA M, CHIUMENTI M, et al. Residual stresses control in additive manufacturing[J]. Journal of Manufacturing and Materials Processing, 2021, 5(4): 138. |
58 | GOUVEIA R M, SILVA F J G, ATZENI E, et al. Effect of scan strategies and use of support structures on surface quality and hardness of L-PBF AlSi10Mg parts[J]. Materials, 2020, 13(10): 2248. |
59 | ZHANG H, GU D D, DAI D H, et al. Influence of scanning strategy and parameter on microstructural feature, residual stress and performance of Sc and Zr modified Al⁃Mg alloy produced by selective laser melting[J]. Materials Science and Engineering: A, 2020, 788: 139593. |
60 | ZHANG S Z, WANG Y K, ZHOU B, et al. Finite element prediction of residual stress in rhombic dodecahedron Ti-6Al-4V titanium alloy additively manufactured by electron beam melting[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 35-47. |
61 | MERCELIS P, KRUTH J P. Residual stresses in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal, 2006, 12(5): 254-265. |
62 | HÖNNIGE J R, COLEGROVE P A, GANGULY S, et al. Control of residual stress and distortion in aluminium wire + arc additive manufacture with rolling[J]. Additive Manufacturing, 2018, 22: 775-783. |
63 | DEREKAR K S, AHMAD B, ZHANG X, et al. Effects of process variants on residual stresses in wire arc additive manufacturing of aluminum alloy 5183[J]. Journal of Manufacturing Science and Engineering, 2022, 144(7): 071005. |
64 | KÖHLER M, SUN L, HENSEL J, et al. Comparative study of deposition patterns for DED-arc additive manufacturing of Al-4046[J]. Materials & Design, 2021, 210: 110122. |
65 | ZHOU J T, ZHOU X, LI H, et al. In-situ laser shock peening for improved surface quality and mechanical properties of laser-directed energy-deposited AlSi10Mg alloy[J]. Additive Manufacturing, 2022, 60: 103177. |
66 | PISCOPO G, SALMI A, ATZENI E. Influence of high-productivity process parameters on the surface quality and residual stress state of AISI 316L components produced by directed energy deposition[J]. Journal of Materials Engineering and Performance, 2021, 30(9): 6691-6702. |
67 | HE B, BI C, LI X D, et al. Residual stresses and deformations of laser additive manufactured metal parts: A review[J]. International Journal of Material Forming, 2022, 16(1): 7. |
68 | YA M, DAI F L, XIE H M, et al. Measurement of non-uniform residual stresses by combined Moiré interferometry and hole-drilling method: Theory, experimental method and applications[J]. Acta Mechanica Sinica, 2003, 19(6): 567-574. |
69 | WANG M, LIU Y N, ZAN T, et al. Residual stress test and simulation of incremental hole drilling method[C]∥ 2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE). Piscataway: IEEE Press, 2016: 257-261. |
70 | 侯晓东, 叶晋, 黄照文, 等. 轮廓法测量残余应力研究进展[J]. 焊接, 2022(8): 1-16. |
HOU X D, YE J, HUANG Z W, et al. Review on residual stress measurement using the contour method[J]. Welding & Joining, 2022(8): 1-16 (in Chinese). | |
71 | WITHERS P J, TURSKI M, EDWARDS L, et al. Recent advances in residual stress measurement[J]. International Journal of Pressure Vessels and Piping, 2008, 85(3): 118-127. |
72 | HILL M R, OLSON M D. Repeatability of the contour method for residual stress measurement[J]. Experimental Mechanics, 2014, 54(7): 1269-1277. |
73 | ZHANG Z, YANG Y F, LI L, et al. Assessment of residual stress of 7050-T7452 aluminum alloy forging using the contour method[J]. Materials Science and Engineering: A, 2015, 644: 61-68. |
74 | DONG F, YI Y P, HUANG S Q. Measuring internal residual stress in Al-Cu alloy forgings by crack compliance method with optimized parameters[J]. Journal of Central South University, 2020, 27(11): 3163-3174. |
75 | ZHAO L, SANTOS MACÍAS J G, DOLIMONT A, et al. Comparison of residual stresses obtained by the crack compliance method for parts produced by different metal additive manufacturing techniques and after friction stir processing[J]. Additive Manufacturing, 2020, 36: 101499. |
76 | 李向东, 涂春磊, 伍昊, 等. 材料内应力的检测方法[J]. 理化检验(物理分册), 2020, 56(6): 15-20. |
LI X D, TU C L, WU H, et al. Testing method for internal stress of materials[J]. Physical Testing and Chemical Analysis: Part A (Physical Testing), 2020, 56(6): 15-20 (in Chinese). | |
77 | 马昌训, 吴运新, 郭俊康. X射线衍射法测量铝合金残余应力及误差分析[J]. 热加工工艺, 2010, 39(24): 5-8. |
MA C X, WU Y X, GUO J K. Residual stress in aluminum alloy measured by X-ray diffraction and error analysis[J]. Hot Working Technology, 2010, 39(24): 5-8 (in Chinese). | |
78 | 苟国庆, 黄楠, 陈辉, 等. X射线衍射法测试高速列车车体铝合金残余应力[J]. 西南交通大学学报, 2012, 47(4): 618-622. |
GOU G Q, HUANG N, CHEN H, et al. Detection of residual stress in aluminum alloy carbody of high-speed train using X-ray diffraction technology[J]. Journal of Southwest Jiaotong University, 2012, 47(4): 618-622 (in Chinese). | |
79 | ISAAC D D, PRIME M B, ARAKERE N. Residual stress measurement of full-scale jet-engine bearing elements using the contour method[C]∥ Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems. Cham: Springer, 2017: 69-81. |
80 | PARK S, KIM I, KIM Y I, et al. Residual stress analysis of additive manufactured A356.2 aluminum alloys using X-ray diffraction methods[J]. Korean Journal of Metals and Materials, 2023, 61(7): 534-544. |
81 | YAN H W, LI X W, LI Z H, et al. Measurement of residual stress in as-quenched 7055 aluminum plate by various methods[C]∥ Chinese Materials Conference. Singapore: Springer, 2018: 369-376. |
82 | MORIN L, BRAHAM C, TAJDARY P, et al. Reconstruction of heterogeneous surface residual-stresses in metallic materials from X-ray diffraction measurements[J]. Mechanics of Materials, 2021, 158: 103882. |
83 | WOO W, FENG Z L, WANG X L, et al. Neutron diffraction measurements of time-dependent residual stresses generated by severe thermomechanical deformation[J]. Scripta Materialia, 2009, 61: 624-627. |
84 | 于鸿垚, 秦海龙, 史松宜. 利用中子衍射法和轮廓法测定GH4169圆盘残余应力[J]. 物理测试, 2022, 40(4): 8-13. |
YU H Y, QIN H L, SHI S Y. Determination of residual stress in GH4169 alloy disc by neutron diffraction method and contour method[J]. Physics Examination and Testing, 2022, 40(4): 8-13 (in Chinese). | |
85 | YANG L, ZHANG J Y, CHEN T X, et al. Predicting residual stress by finding peak shape using artificial neural networks[C]∥ 2020 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). Piscataway: IEEE Press, 2020: 633-640. |
86 | QOZAM H, CHAKI S, BOURSE G, et al. Microstructure effect on the Lcr elastic wave for welding residual stress measurement[J]. Experimental Mechanics, 2010, 50(2): 179-185. |
87 | MA Y Y, HU Z L, TANG Y, et al. Laser opto-ultrasonic dual detection for simultaneous compositional, structural, and stress analyses for wire + arc additive manufacturing[J]. Additive Manufacturing, 2020, 31: 100956. |
88 | ZHAN Y, LIU C S, KONG X W, et al. Experiment and numerical simulation for laser ultrasonic measurement of residual stress[J]. Ultrasonics, 2017, 73: 271-276. |
89 | 邓亚. 超声波法检测6061-T6铝合金残余应力的研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
DENG Y. Research on residual stress measurement of 6061-T6 aluminum alloy by ultrasonic method[D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese). | |
90 | ACEVEDO R, SEDLAK P, KOLMAN R, et al. Residual stress analysis of additive manufacturing of metallic parts using ultrasonic waves: State of the art review[J]. Journal of Materials Research and Technology, 2020, 9(4): 9457-9477. |
91 | 王岩, 刘雨萌, 刘江伟, 等. 金属增材制造数值模拟研究进展[J]. 粉末冶金技术, 2022, 40(2): 179-192. |
WANG Y, LIU Y M, LIU J W, et al. Research progress on numerical simulation of metal additive-manufacturing process[J]. Powder Metallurgy Technology, 2022, 40(2): 179-192 (in Chinese). | |
92 | BOCK F E, HERRNRING J, FROEND M, et al. Experimental and numerical thermo-mechanical analysis of wire-based laser metal deposition of Al-Mg alloys[J]. Journal of Manufacturing Processes, 2021, 64: 982-995. |
93 | WANG L F, JIANG X H, ZHU Y H, et al. An approach to predict the residual stress and distortion during the selective laser melting of AlSi10Mg parts[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(9): 3535-3546. |
94 | 姬进红, 刘文, 胥国祥, 等. 铝合金CMT电弧增材制造残余应力分析[J]. 焊接技术, 2023, 52(5): 1-5, 185. |
JI J H, LIU W, XU G X, et al. Analysis of residual stress in CMT arc additive manufacturing of aluminum alloys[J]. Welding Technology, 2023, 52(5): 1-5, 185 (in Chinese). | |
95 | LYU D D, HU W, REN B, et al. Numerical prediction of residual deformation and failure for powder bed fusion additive manufacturing of metal parts[J]. Journal of Mechanics, 2020, 36(5): 623-636. |
96 | 贾金龙, 赵玥, 董明晔, 等. 基于温度函数法的铝合金电弧增材制造残余应力与变形数值模拟[J]. 焊接学报, 2019, 40(9): 1-6, 161. |
JIA J L, ZHAO Y, DONG M Y, et al. Numerical simulation on residual stress and deformation for WAAM parts of aluminum alloy based on temperature function method[J]. Transactions of the China Welding Institution, 2019, 40(9): 1-6, 161 (in Chinese). | |
97 | 董明晔, 赵玥, 贾金龙, 等. 铝合金筒壁电弧增材制造数值模拟中分段弧形体热源模型的建立[J]. 清华大学学报(自然科学版), 2019, 59(10): 823-830. |
DONG M Y, ZHAO Y, JIA J L, et al. Development of segmented cambered body heat source model in numerical simulations of aluminum alloy cylindrical walls[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(10): 823-830 (in Chinese). | |
98 | YANG M H, WU G Y, LI X W, et al. Efficient prediction of residual stress in additive manufacturing based on semi-analytical solution[J]. Welding in the World, 2024, 68(1): 107-116. |
99 | ULLAH R, LIAN J H, AKMAL J, et al. Prediction and validation of melt pool dimensions and geometric distortions of additively manufactured AlSi10Mg[J]. The International Journal of Advanced Manufacturing Technology, 2023, 126(7): 3593-3613. |
100 | DONG W, LIANG X, CHEN Q, et al. A new procedure for implementing the modified inherent strain method with improved accuracy in predicting both residual stress and deformation for laser powder bed fusion[J]. Additive Manufacturing, 2021, 47: 102345. |
101 | MUKHERJEE T, ZHANG W, DEBROY T. An improved prediction of residual stresses and distortion in additive manufacturing[J]. Computational Materials Science, 2017, 126: 360-372. |
102 | 耿汝伟, 程延海, 杜军, 等. 2319铝合金电弧增材制造温度场与应力演变研究[J]. 材料导报, 2023, 37(23): 169-176. |
GENG R W, CHENG Y H, DU J, et al. Research on temperature field and stress evolution of 2319 aluminum alloy in wire and arc additive manufacturing[J]. Materials Reports, 2023, 37(23): 169-176 (in Chinese). | |
103 | YAN W T, LU Y, JONES K, et al. Data-driven characterization of thermal models for powder-bed-fusion additive manufacturing[J]. Additive Manufacturing, 2020, 36: 101503. |
104 | GRILLI N, HU D J, YUSHU D W, et al. Crystal plasticity model of residual stress in additive manufacturing using the element elimination and reactivation method[J]. Computational Mechanics, 2022, 69(3): 825-845. |
105 | ZHANG W J, HU Y Y, MA X F, et al. Very-high-cycle fatigue behavior of AlSi10Mg manufactured by selected laser melting: Crystal plasticity modeling[J]. International Journal of Fatigue, 2021, 145: 106109. |
106 | LINDROOS M, PINOMAA T, ANTIKAINEN A, et al. Micromechanical modeling approach to single track deformation, phase transformation and residual stress evolution during selective laser melting using crystal plasticity[J]. Additive Manufacturing, 2021, 38: 101819. |
107 | HU D J, GRILLI N, WANG L, et al. Microscale residual stresses in additively manufactured stainless steel: Computational simulation[J]. Journal of Mechanics Physics of Solids, 2022, 161: 104822. |
108 | ZHANG X X, ANDRÄ H. Crystal plasticity simulation of the macroscale and microscale stress⁃strain relations of additively manufactured AlSi10Mg alloy[J]. Computational Materials Science, 2021, 200: 110832. |
109 | GUO M X, YE Y, JIANG X H, et al. Microstructure, mechanical properties and residual stress of selective laser melted AlSi10Mg[J]. Journal of Materials Engineering and Performance, 2019, 28(11): 6753-6760. |
110 | 李少海, 李昭青. 激光增材制造金属零件内应力调控研究现状[J]. 特种铸造及有色合金, 2018, 38(2): 160-163. |
LI S H, LI Z Q. Research status of internal stress in metal laser additive manufacturing[J]. Special Casting & Nonferrous Alloys, 2018, 38(2): 160-163 (in Chinese). | |
111 | 赵亮, 王丽芳, 朱刚贤, 等. 多阶模半导体激光增材制造工艺参数对熔覆层残余应力影响的数值模拟[J]. 应用激光, 2021, 41(2): 366-373. |
ZHAO L, WANG L F, ZHU G X, et al. Numerical simulation on the influence of process parameters on residual stress in cladding layer by multi-mode semi-conductor laser additive manufacturing[J]. Applied Laser, 2021, 41(2): 366-373 (in Chinese). | |
112 | 张玉玲. 电弧增材制造温度场及应力场的数值模拟分析[D]. 大连: 大连理工大学, 2020. |
ZHANG Y L. Numerical simulation analysis of temperature field and stress field in arc additive manufacturing[D].Dalian: Dalian University of Technology, 2020 (in Chinese). | |
113 | 邓诗诗, 杨永强, 李阳, 等. 分区扫描路径规划及其对SLM成型件残余应力分布的影响[J]. 中国激光, 2016, 43(12): 67-75. |
DENG S S, YANG Y Q, LI Y, et al. Planning of area-partition scanning path and its effect on residual stress of SLM molding parts[J]. Chinese Journal of Lasers, 2016, 43(12): 67-75 (in Chinese). | |
114 | LI K, MA R J, QIN Y, et al. A review of the multi-dimensional application of machine learning to improve the integrated intelligence of laser powder bed fusion[J]. Journal of Materials Processing Technology, 2023, 318: 118032. |
115 | SEALY M P, KARUNAKARAN R, ORTGIES S, et al. Reducing corrosion of additive manufactured magnesium alloys by interlayer ultrasonic peening[J]. CIRP Annals, 2021, 70(1): 179-182. |
116 | VAVERKA O, KOUTNY D, VRANA R, et al. Effect of heat treatment on mechanical properties and residual stresses in additively manufactured parts[C]∥ Proceedings of the 24th International Conference Engineering Mechanics 2018. Svratka: Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, 2018: 14-17. |
117 | ZHUO L C, WANG Z Y, ZHANG H J, et al. Effect of post-process heat treatment on microstructure and properties of selective laser melted AlSi10Mg alloy[J]. Materials Letters, 2019, 234: 196-200. |
118 | 唐鹏钧, 陈冰清, 闫泰起, 等. 热处理对增材制造AlSi10Mg合金组织性能及残余应力的影响[J]. 科技导报, 2021, 39(9): 36-47. |
TANG P J, CHEN B Q, YAN T Q, et al. Effects of heat treatment on microstructure, properties, and residual stress of additive manufactured AlSi10Mg alloy[J]. Science & Technology Review, 2021, 39(9): 36-47 (in Chinese). | |
119 | SHEN H Y, LIN J H, ZHOU Z Y, et al. Effect of induction heat treatment on residual stress distribution of components fabricated by wire arc additive manufacturing[J]. Journal of Manufacturing Processes, 2022, 75: 331-345. |
120 | TONELLI L, LIVERANI E, MORRI A, et al. Role of direct aging and solution treatment on hardness, microstructure and residual stress of the A357 (AlSi7Mg0.6) alloy produced by powder bed fusion[J]. Metallurgical and Materials Transactions B, 2021, 52(4): 2484-2496. |
121 | ZHOU C A, SUN Q D, QIAN D Q, et al. Effect of deep cryogenic treatment on mechanical properties and residual stress of AlSi10Mg alloy fabricated by laser powder bed fusion[J]. Journal of Materials Processing Technology, 2022, 303: 117543. |
122 | LI K, JI C, BAI S W, et al. Selective laser melting of magnesium alloys: Necessity, formability, performance, optimization and applications[J]. Journal of Materials Science & Technology, 2023, 154: 65-93. |
123 | WANG C R, LI Y P, TIAN W, et al. Influence of ultrasonic impact treatment and working current on microstructure and mechanical properties of 2219 aluminium alloy wire arc additive manufacturing parts[J]. Journal of Materials Research and Technology, 2022, 21: 781-797. |
124 | XING X D, DUAN X M, SUN X J, et al. Modification of residual stresses in laser additive manufactured AlSi10Mg specimens using an ultrasonic peening technique[J]. Materials, 2019, 12(3): 455. |
125 | SUN R J, LI L H, ZHU Y, et al. Microstructure, residual stress and tensile properties control of wire-arc additive manufactured 2319 aluminum alloy with laser shock peening[J]. Journal of Alloys and Compounds, 2018, 747: 255-265. |
126 | 唐伟, 解闻, 张家园. 冷喷涂镁合金基体残余应力的数值研究[J]. 表面技术, 2021, 50(1): 62-70. |
TANG W, XIE W, ZHANG J Y. Numerical study on residual stress of cold sprayed Mg-alloy substrate[J]. Surface Technology, 2021, 50(1): 62-70 (in Chinese). | |
127 | GREULING S, WEISE W, FETZER D, et al. Impact of various surface treatments on the S-N curve of additive manufactured AlSi12[C]∥ Mechanical Fatigue of Metals. Cham: Springer, 2019: 83-89. |
128 | ZHANG S, GONG M C, ZENG X Y, et al. Residual stress and tensile anisotropy of hybrid wire arc additive-milling subtractive manufacturing[J]. Journal of Materials Processing Technology, 2021, 293: 117077. |
129 | LI K, MA R J, ZHANG M, et al. Hybrid post-processing effects of magnetic abrasive finishing and heat treatment on surface integrity and mechanical properties of additively manufactured Inconel 718 superalloys[J]. Journal of Materials Science & Technology, 2022, 128: 10-21. |
130 | GUO J, AU K H, SUN C N, et al. Novel rotating-vibrating magnetic abrasive polishing method for double-layered internal surface finishing[J]. Journal of Materials Processing Technology, 2019, 264: 422-437. |
131 | KOÇ M, CULP J, ALTAN T. Prediction of residual stresses in quenched aluminum blocks and their reduction through cold working processes[J]. Journal of Materials Processing Technology, 2006, 174(1-3): 342-354. |
[1] | 高同州, 贺小帆, 王晓雷, 李紫光, 朱振涛, 詹志新. 基于CDM理论与SVM模型的2014-T6铝合金疲劳寿命预测[J]. 航空学报, 2024, 45(7): 228952-228952. |
[2] | 司瑞, 陈勇. 民用飞机增材制造技术应用发展趋势[J]. 航空学报, 2024, 45(5): 529677-529677. |
[3] | 应岳峰, 陈琪昊, 王卫东, 毛欣宇. 焊丝超声振动对铝合金熔化极气体保护焊缝成形及气孔的影响[J]. 航空学报, 2024, 45(2): 428711-428711. |
[4] | 郭正华, 陈正, 曾一达, 郭义乾, 牛振华, 杨子睿, 李智勇, 万骏武. 选区激光熔化制备难熔高熵合金研究现状与展望[J]. 航空学报, 2024, 45(14): 29518-029518. |
[5] | 李毅, 王振忠, 肖宇航, 张鹏飞. 金属激光增材+X复合制造技术综述[J]. 航空学报, 2024, 45(13): 629349-629349. |
[6] | 王相宇, 王锦辉, 仇文豪, 牛金涛, 付秀丽, 乔阳. 不同冷却条件下钛铝合金切削加工材料去除机理和加工表面完整性[J]. 航空学报, 2024, 45(13): 629471-629471. |
[7] | 董立卓, 张思琪, 张钊, 吴宝海. 机理⁃数据混合驱动的叶片加工变形预测方法[J]. 航空学报, 2024, 45(13): 629037-629037. |
[8] | 张少平, 郭会明, 高彤, 张卫红. 基于先进激光加工技术的下一代航空发动机跨尺度整体式承力薄壁构件设计方法与应用[J]. 航空学报, 2024, 45(13): 630037-630037. |
[9] | 张仲玺, 王帅钦, 赵慧娟, 张定华, 汪龙皓. 薄壁零件残余应力演化机理及变形控制方法[J]. 航空学报, 2024, 45(13): 629365-629365. |
[10] | 唐论, 余圣甫, 郑博, 史玉升, 陈颖. 圆柱面点阵自生Al2O3铝合金粉芯丝材开发及应用[J]. 航空学报, 2023, 44(9): 626864-626864. |
[11] | 张卫红, 周涵, 李韶英, 朱继宏, 周璐. 航天高性能薄壁构件的材料-结构一体化设计综述[J]. 航空学报, 2023, 44(9): 627428-627428. |
[12] | 林忠钦, 于忠奇, 戴冬华, 樊晓光, 余圣甫, 顾冬冬, 李淑慧, 史玉升. 复杂高筋薄壁构件旋压-增材复合制造技术发展与展望[J]. 航空学报, 2023, 44(9): 627493-627493. |
[13] | 金士杰, 王志诚, 田鑫, 孙旭, 林莉. 基于半跨模式波的铝合金板底面缺陷TOFD检测[J]. 航空学报, 2023, 44(4): 426674-426674. |
[14] | 顾孟奇, 朱家才, 郭万林, 薛松. 可重复使用运载火箭结构疲劳耐久性与可靠性展望[J]. 航空学报, 2023, 44(23): 628299-628299. |
[15] | 邹田春, 巨乐章, 管玉玺, 李泽钢, 陈红呈. 铺层方式对CFRP⁃Al胶接接头疲劳行为的影响[J]. 航空学报, 2023, 44(18): 428264-428264. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学