收稿日期:
2023-12-28
修回日期:
2024-01-22
接受日期:
2024-03-06
出版日期:
2024-07-15
发布日期:
2024-04-10
通讯作者:
张少平
E-mail:zhangshaoping@aecc.cn
基金资助:
Shaoping ZHANG1(), Huiming GUO1, Tong GAO2, Weihong ZHANG2
Received:
2023-12-28
Revised:
2024-01-22
Accepted:
2024-03-06
Online:
2024-07-15
Published:
2024-04-10
Contact:
Shaoping ZHANG
E-mail:zhangshaoping@aecc.cn
Supported by:
摘要:
由宏观骨架-细观点阵-微观表面构成的多尺度整体式结构是一类极具高性能、多功能、轻量化潜力的新型结构形式,日渐成熟的先进激光加工技术不仅极大提升了高性能结构的制造能力,也为新型复杂结构的制造提供了可能。在简要总结宏观骨架、细观点阵、微观表面设计与制造现状基础上,提出了以先进激光加工技术为制造手段的多尺度整体式结构设计方法。以中介机匣为例,采用拓扑优化技术设计了主承力骨架结构,通过在拓扑优化低密度区域或低应力区域填充可制造点阵的方式完成了轻量化点阵设计,与实壁铸造件相比减重20%以上;在流道表面设计了导流减阻微沟槽结构,采用超快激光表面刻蚀加工,仿真模拟表明微沟槽减阻效果超过10%。采用先进激光加工技术开展了多尺度整体式结构设计的应用探索,为下一代航空发动机结构研制提供了可供借鉴的新途径。
中图分类号:
张少平, 郭会明, 高彤, 张卫红. 基于先进激光加工技术的下一代航空发动机跨尺度整体式承力薄壁构件设计方法与应用[J]. 航空学报, 2024, 45(13): 630037-630037.
Shaoping ZHANG, Huiming GUO, Tong GAO, Weihong ZHANG. Design and manufacturing method of multi-scale integrated load bearing thin-walled structure for application in next-generation aeroengine based on advanced laser processing technology[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(13): 630037-630037.
1 | 李其汉, 王延荣. 航空发动机结构强度设计问题[M]: 上海:上海交通大学出版社, 2014:12-25. |
LI Q H, WANG Y R. The design problem of aero-engine strucuture strength[M]: Shanghai: Shanghai Jiao Tong University Press, 2014: 12-25 (in Chinese). | |
2 | PRAKASH K S, NANCHARAIH T, RAO V V S. Additive manufacturing techniques in manufacturing -an overview[J]. Materials Today: Proceedings, 2018,5(2): 3873-3882. |
3 | GAO W, ZHANG Y B, RAMANUJAN D, et al. The status, challenges, and future of additive manufacturing in engineering[J]. Computer-Aided Design, 2015,69: 65-89. |
4 | METEYER S, XU X, PERRY N, et al. Energy and material flow analysis of binder-jetting additive manufacturing processes[J]. Procedia CIRP, 2014, 15: 19-25. |
5 | MUELLER B. Additive manufacturing technologies-rapid prototyping to direct digital manufacturing[J]. Assembly Automation, 2012, 32:373-388. |
6 | IBHADODE O, ZHANG Z D, SIXT J, et al. Topology optimization for metal additive manufacturing: current trends, challenges, and future outlook[J]. Virtual and Physical Prototyping, 2023, 18(1): 192-218. |
7 | TIAN X Y, WU L L, GU D D, et al. Roadmap for additive manufacturing: toward intellectualization and industrialization[J]. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2022,1(1): 10-14. |
8 | FERNÁNDEZ E, COLLET M, ALARCÓN P, et al. An aggregation strategy of maximum size constraints in density-based topology optimization[J]. Structural and Multidisciplinary Optimization, 2019, 60(5): 30-42. |
9 | FERNANDERS F J, PAVANELLO R. Topology optimization of adhesive material in a single lap joint using an evolutionary structural optimization method and a cohesive zone model as failure criterion:[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2022, 236(4):757-778. |
10 | ALLAIRE G, GOURNAY F D, JOUVE F, et al. Structural optimization using topological and shape sensitivity via a level set method[J]. Control & Cybernetics, 2005, 34(1): 59-80. |
11 | TAKAYUKI Y, NISHIWAKI S, IZUI K, et al. A structural optimization method incorporating level set boundary expressions based on the concept of the phase field method[J].Transactions of the Japan Society of Mechanical Engineers Series A, 2009, 75(753): 550-558. |
12 | ZHOU L, GAO T, ZHANG W H. Hole control methods in feature-driven topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 417: 16-44. |
13 | ZHANG W S, LI D, ZHANG J, et al. Minimum length scale control in structural topology optimization based on the Moving Morphable Components approach[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 311: 327-355. |
14 | GUEST J K. Imposing maximum length scale in topology optimization[J]. Structural and Multidisciplinary Optimization, 2009, 37: 463-473. |
15 | YANG K K, FERNANDEZ E, NIU C, et al. Note on spatial gradient operators and gradient-based minimum length constraints in SIMP topology optimization[J]. Structural and Multidisciplinary Optimization, 2019,60(1): 393-400. |
16 | ZHOU M D, LAZAROV B S, WANG F W, et al. Minimum length scale in topology optimization by geometric constraints[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 293: 266-282. |
17 | SONG L L, ZHAO J, GAO T, et al. Length scale control in density-based multi-material topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 401: 1221-1225. |
18 | SONG L L, GAO T, WANG J, et al. Directional maximum length scale control in density-based topology optimization[J]. Computers & Structures, 2024,292: 107-136. |
19 | ZHOU L, SIGMUND O, ZHANG W H. Self-supporting structure design with feature-driven optimization approach for additive manufacturing[J]. Computer Methods in Applied Mechanics and Engineering, 2021,386: 1-29 |
20 | ZHANG W H, WANG C, ZHOU L, et al. Three-dimensional topology optimization considering overhang constraints with B-spline parameterization[J]. Computers & Structures, 2022, 269: 8-23. |
21 | PAUL R, ANAND S, GERNER F. Effect of thermal deformation on part errors in metal powder based additive manufacturing processes[J]. Journal of Manufacturing Science and Engineering, 2014, 136(3): 31009. |
22 | SONG L L, GAO T, TANG L, et al. An all-movable rudder designed by thermo-elastic topology optimization and manufactured by additive manufacturing[J]. Computers & Structures, 2021, 243: 106405. |
23 | SHI G H, GUAN C Q, QUAN D L, et al. An aerospace bracket designed by thermo-elastic topology optimization and manufactured by additive manufacturing[J]. Chinese Journal of Aeronautics, 2020,33(4): 1252-1261. |
24 | RIBEIRO T P, BERNARDO L F A, ANDRADE J M A. Topology optimisation in structural steel design for additive manufacturing[J]. Applied Sciences, 2021,11(5): 2112. |
25 | 范华林, 杨卫. 轻质高强点阵材料及其力学性能研究进展[J]. 力学进展, 2007, 37(1): 99-112. |
FAN H L, YANG W. Development of lattice materials with high specific stiffiness and strength[J]. Advances in Mechanics, 2007, 37(1): 99-112 (in Chinese). | |
26 | 卢天健, 何德坪, 陈常青, 等. 超轻多孔金属材料的多功能特性及应用[J]. 力学进展, 2006, 36(4): 517-535. |
LU T J, HE D P, CHEN C Q, et al. The multi-functionality of ultra-light porous metals and their applications[J]. Advances in Mechanics, 2006, 36(4): 517-535 (in Chinese). | |
27 | CHEN Y, MAI Y W, YE L. Perspectives for multiphase mechanical metamaterials[J]. Materials Science and Engineering: Reports, 2023, 153: 100725. |
28 | LU C X, HSIEH M T, HUANG Z F, et al. Architectural design and additive manufacturing of mechanical metamaterials: A review[J]. Engineering, 2022, 17: 44-63. |
29 | SURJADI J U, GAO L B, DU H F, et al. Mechanical metamaterials and their engineering applications[J]. Advanced Engineering Materials, 2019, 21(3): 1800864. |
30 | MENG L, SHI J X, YANG C, et al. An emerging class of hyperbolic lattice exhibiting tunable elastic properties and impact absorption through chiral twisting[J]. Extreme Mechanics Letters, 2020, 40: 100869. |
31 | AL-KETAN O, AL-RUB R K ABU. Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices[J]. Advanced Engineering Materials. 2019, 21(10): 1900524. |
32 | HAN L, CHE S A. An overview of materials with triply periodic minimal surfaces and related geometry: from biological structures to self-assembled systems[J]. Advanced Materials, 2018, 30(17): 1705708. |
33 | WANG J H, CHEN K, ZENG M, et al. Assessment of flow and heat transfer of triply periodic minimal surface based heat exchangers[J]. Energy, 2023, 282: 128806. |
34 | LI W G, LI W H, YU Z B. Heat transfer enhancement of water-cooled triply periodic minimal surface heat exchangers[J]. Applied Thermal Engineering, 2022,217: 119198. |
35 | LI T T, CHEN Y Y, HU X Y, et al. Exploiting negative Poisson's ratio to design 3D-printed composites with enhanced mechanical properties[J]. Materials & Design, 2018, 142: 247-258. |
36 | XIAO L, XU X, SONG W, et al. A multi-cell hybrid approach to elevate the energy absorption of micro-lattice materials[J]. Materials, 2020, 13(18): 4083. |
37 | PAN C, HAN Y F, LU J P. Design and optimization of lattice structures: A review[J]. Applied Sciences, 2020,10(18): 25-51. |
38 | 杜义贤, 李涵钊, 田启华, 等. 基于能量均匀化的高剪切强度周期性点阵结构拓扑优化[J]. 机械工程学报, 2017,53(18): 152-160. |
DU Y X, LI H Z, TIAN Q H, et al. Topology optimization of periodic lattice structure with high shear strength using energy-based homogenization [J]. Journal of Mechanical Engineering, 2017, 53(18):152-160 (in Chinese). | |
39 | ZHANG W H, WANG F W, DAI G M, et al. Topology optimal design of material microstructures using strain energy-based method[J]. Chinese Journal of Aeronautics, 2007, 20(4): 320-326. |
40 | BENDSØE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224. |
41 | 张卫红,徐仕杰, 朱继宏. 循环对称结构的多尺度拓扑优化方法[J]. 计算力学学报, 2021, 38(4): 512-522. |
ZHANG W H, XU S J, ZHU J H. Multi-scale topology optimization method for cyclic symmetric structures[J]. Chinese Journal of Computational Mechanics, 2021, 38(4):512-522 (in Chinese). | |
42 | ALBERDI R, DINGREVILLE R, ROBBINS J, et al. Multi-morphology lattices lead to improved plastic energy absorption[J]. Materials & Design, 2020, 194: 1-10. |
43 | OZDEMIR Z, HERNANDEZ-NAVA E, TYAS A, et al. Energy absorption in lattice structures in dynamics: Experiments[J]. International Journal of Impact Engineering, 2016, 89: 49-61. |
44 | SAHARIAH B J, BAISHYA M J, NAMDEO A, et al. A novel strategy to design lattice structures with zero Poisson’s ratio[J]. Engineering Structures, 2023,288: 116214. |
45 | QIN Q, DAYYANI I, WEBB P. Structural mechanics of cylindrical fish-cell zero Poisson’s ratio metamaterials[J]. Composite Structures, 2022, 289: 115455. |
46 | XUE X, LIN C C, WU F, et al. Lattice structures with negative Poisson’s ratio: A review[J]. Materials Today Communications, 2023, 34: 105132. |
47 | CHEN Z Y, WANG Z, ZHOU S W, et al. Novel negative Poisson’s ratio lattice structures with enhanced stiffness and energy absorption capacity[J]. Materials, 2018,11(7): 1095. |
48 | XU Z, ZHAO H F, WANG K. Design of hourglass-lattice metastructure with near-zero thermal expansion using structural optimization method[J]. Engineering Structures, 2023, 277: 115374. |
49 | LAKES R, LEHMAN J. Stiff, strong zero thermal expansion lattices via the Poisson effect[J]. Journal of Materials Research, 2013, 28(17): 2499-2508. |
50 | WANG C, GU X J, ZHU J H, et al. Concurrent design of hierarchical structures with three-dimensional parameterized lattice microstructures for additive manufacturing[J]. Structural and Multidisciplinary Optimization, 2020,61(3): 869-894. |
51 | GAO J, LUO Z, XIA L, et al. Concurrent topology optimization of multiscale composite structures in Matlab[J]. Structural and Multidisciplinary Optimization, 2019, 60(6): 2621-2651. |
52 | LIU L, YAN J, CHENG G D. Optimum structure with homogeneous optimum truss-like material[J]. Computers & Structures, 2008, 86(13-14): 1417-1425. |
53 | LI Y, GAO T, ZHOU Q Y, et al. Layout design of thin-walled structures with lattices and stiffeners using multi-material topology optimization[J]. Chinese Journal of Aeronautics, 2023, 36(4): 496-509. |
54 | DALLAGO M, RAGHAVENDRA S, LUCHIN V, et al. Geometric assessment of lattice materials built via Selective Laser Melting[J]. Materials Today: Proceedings, 2019, 7: 353-361. |
55 | SING S L, WIRIA F E, YEONG W Y. Selective laser melting of lattice structures: A statistical approach to manufacturability and mechanical behavior[J]. Robotics and Computer-Integrated Manufacturing, 2018,49: 170-180. |
56 | PENG C X, TRAN P, NGUYEN-XUAN H, et al. Mechanical performance and fatigue life prediction of lattice structures: Parametric computational approach[J]. Composite Structures, 2020, 235: 111821. |
57 | ZARGARIAN A, ESFAHANIAN M, KADKHODAPOUR J, et al. Numerical simulation of the fatigue behavior of additive manufactured titanium porous lattice structures[J]. Materials Science and Engineering: C, 2016, 60: 339-347. |
58 | VIGLIOTTI A, PASINI D. Stiffness and strength of tridimensional periodic lattices[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 229-232: 27-43. |
59 | SPAETH M, BARTHLOTT W. Lotus-Effect®: Biomimetic super-hydrophobic surfaces and their application[J]. Advances in Science and Technology, 2009, 60: 38-46. |
60 | LIU B, HE Y N, FAN Y, et al. Fabricating super‐hydrophobic lotus-leaf-like surfaces through soft-lithographic imprinting[J]. Macromolecular rapid communications, 2006,27(21): 1859-1864. |
61 | FENG L, LI S H, LI Y S, et al. Super‐hydrophobic surfaces: from natural to artificial[J]. Advanced materials,2002, 14(24): 1857-1860. |
62 | ZHANG D Y, LUO Y Y, XIANG L, et al. Numerical simulation and experimental study of drag-reducing surface of a real shark skin[J]. Journal of Hydrodynamics, Ser B, 2011, 23(2): 204-211. |
63 | DEAN B, BHUSHAN B. Shark-skin surfaces for fluid-drag reduction in turbulent flow: A review[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 368(1929): 4775-4806. |
64 | VENDITTI J G. Turbulent flow and drag over fixed two‐and three‐dimensional dunes[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F4): F04008. |
65 | 沈洪,任浩东, 李海东. 面向功能表面的激光仿生制造技术研究进展[J]. 空天防御, 2023, 6(12): 12-22. |
SHEN H, REN H D, LI H D. Research progress in laser biomimetic manufacturing technology for functional surfaces[J]. Aerospace Defense, 2023, 6(12): 12-22 (in Chinese). | |
66 | BIXLER G D, BHUSHAN B. Bioinspired micro/nanostructured surfaces for oil drag reduction in closed channel flow[J]. Soft Matter, 2013, 9(5): 1620-1635. |
67 | 肖强, 徐睿. 超快激光制备材料表面微纳结构的研究进展[J]. 中国表面工程, 2020, 33(1): 1-16. |
XIAO Q, XU R. Research progress in surface microstructure of materials prepared by ultrafast laser[J]. China Surface Engineering, 2020, 33(1): 1-16 (in Chinese). | |
68 | 江国琛, 潘瑞, 陈昶昊, 等. 超快激光制备水面减阻微纳结构及其耐蚀性研究[J]. 中国激光, 2020, 47(8): 73-81. |
JIANG G C, PAN R, CHEN C H, et al. Preparation of water surface drag reducing Micro/Nano structures by ultrafast laser and their corrosion resistance research[J]. Chinese Journal of Lasers, 2020, 47(8): 73-81 (in Chinese). |
[1] | 陈立, 曾孝云, 黄文, 张建飞. 简谐基础加速度激励下的点阵结构优化设计[J]. 航空学报, 2024, 45(5): 529704-529704. |
[2] | 司瑞, 陈勇. 民用飞机增材制造技术应用发展趋势[J]. 航空学报, 2024, 45(5): 529677-529677. |
[3] | 李毅, 王振忠, 肖宇航, 张鹏飞. 金属激光增材+X复合制造技术综述[J]. 航空学报, 2024, 45(13): 629349-629349. |
[4] | 李坤, 左春林, 廖若冰, 吉辰, 蒋斌, 潘复生. 增材制造铝合金残余应力研究现状及展望[J]. 航空学报, 2024, 45(12): 29380-029380. |
[5] | 李文韬, 何允钦, 李文博, 张艺仪, 梁国柱. 固体火箭发动机三维装药的逆向设计与形状优化[J]. 航空学报, 2024, 45(11): 529089-529089. |
[6] | 唐论, 余圣甫, 郑博, 史玉升, 陈颖. 圆柱面点阵自生Al2O3铝合金粉芯丝材开发及应用[J]. 航空学报, 2023, 44(9): 626864-626864. |
[7] | 张卫红, 周涵, 李韶英, 朱继宏, 周璐. 航天高性能薄壁构件的材料-结构一体化设计综述[J]. 航空学报, 2023, 44(9): 627428-627428. |
[8] | 林忠钦, 于忠奇, 戴冬华, 樊晓光, 余圣甫, 顾冬冬, 李淑慧, 史玉升. 复杂高筋薄壁构件旋压-增材复合制造技术发展与展望[J]. 航空学报, 2023, 44(9): 627493-627493. |
[9] | 韩剑, 孙士勇, 牛斌, 杨睿, 吴东江. 树脂基复合材料点阵结构的制造技术研究进展[J]. 航空学报, 2023, 44(9): 628255-628255. |
[10] | 顾孟奇, 朱家才, 郭万林, 薛松. 可重复使用运载火箭结构疲劳耐久性与可靠性展望[J]. 航空学报, 2023, 44(23): 628299-628299. |
[11] | 张志强, 勾青泽, 路学成, 王浩, 曹轶然, 郭志永. 高强铝合金CMT+P电弧增材制造熔滴过渡行为[J]. 航空学报, 2023, 44(13): 427881-427881. |
[12] | 梁宽, 付莉莉, 张晓鹏, 罗阳军. 基于材料场级数展开的结构动力学拓扑优化[J]. 航空学报, 2022, 43(9): 226002-226002. |
[13] | 韩凯, 董日昌, 邵丰伟, 龚文斌, 常家超. 基于改进遗传算法的导航卫星星间链路网络动态拓扑优化技术[J]. 航空学报, 2022, 43(9): 326095-326095. |
[14] | 郭文杰, 朱继宏, 罗利龙, 常亮. 考虑组件保形约束的多组件结构系统布局优化[J]. 航空学报, 2022, 43(5): 225225-225225. |
[15] | 闫浩, 吴晓明. 载荷敏度抑制下涡轮盘拓扑优化及结构演化[J]. 航空学报, 2022, 43(5): 225295-225295. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学