1 |
万敏. 薄壁件周铣加工过程中表面静态误差预测关键技术研究[D]. 西安: 西北工业大学, 2005: 21-46.
|
|
WAN M. Numerical prediction of static form errors in the peripheral milling of thin-walled workpiece[D].Xi’an: Northwestern Polytechnical University, 2005: 21-46 (in Chinese).
|
2 |
LI P F, LIU Y, GONG Y D, et al. New deformation prediction of micro thin-walled structures by iterative FEM[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(5): 2027-2040.
|
3 |
YAO C F, ZHANG J Y, CUI M C, et al. Machining deformation prediction of large fan blades based on loading uneven residual stress[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(9): 4345-4356.
|
4 |
王成龙, 贺永海, 孙杰, 等. 大型薄壁筒件数字减薄中的变形自适应补偿方法[J]. 航天制造技术, 2021(3): 23-27.
|
|
WANG C L, HE Y H, SUN J, et al. A deformation adaptive compensation method for digital thinning of large thin-walled cylinder parts[J]. Aerospace Manufacturing Technology, 2021(3): 23-27 (in Chinese).
|
5 |
LI W T, WANG L P, YU G. Chatter prediction in flank milling of thin-walled parts considering force-induced deformation[J]. Mechanical Systems and Signal Processing, 2022, 165: 108314.
|
6 |
GE G Y, XIAO Y K, FENG X B, et al. An efficient prediction method for the dynamic deformation of thin-walled parts in flank milling[J]. Computer-Aided Design, 2022, 152: 103401.
|
7 |
JAYANTI S, REN D, ERICKSON E, et al. Predictive modeling for tool deflection and part distortion of large machined components[J]. Procedia CIRP, 2013, 12: 37-42.
|
8 |
廖凯, 张萧笛, 车兴飞, 等. 铝合金薄壁件加工变形的力学模型构建与分析[J]. 哈尔滨工业大学学报, 2018, 50(5): 166-172.
|
|
LIAO K, ZHANG X D, CHE X F, et al. Construction and analysis of mechanic model of deformation for Al alloy thin-walled component[J]. Journal of Harbin Institute of Technology, 2018, 50(5): 166-172 (in Chinese).
|
9 |
黄晓明, 孙杰, 李剑峰. 基于刚度与应力演变机制的航空整体结构件加工变形预测理论建模[J]. 机械工程学报, 2017, 53(9): 201-208.
|
|
HUANG X M, SUN J, LI J F. Mathematical modeling of aeronautical monolithic component machining distortion based on stiffness and residual stress evolvement[J]. Journal of Mechanical Engineering, 2017, 53(9): 201-208 (in Chinese).
|
10 |
LI X Y, LI L, YANG Y F, et al. Variance-based sensitivity analysis for the influence of residual stress on machining deformation[J]. Journal of Manufacturing Processes, 2021, 68: 1072-1085.
|
11 |
ZHAO Z W, LI Y G, LIU C Q, et al. A subsequent-machining-deformation prediction method based on the latent field estimation using deformation force[J]. Journal of Manufacturing Systems, 2022, 63: 224-237.
|
12 |
LIU F, ZHANG N S, WANG A M, et al. Deformation prediction of thin-walled parts based on BP neural network[C]∥ 2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC). Piscataway: IEEE Press, 2021: 169-172.
|
13 |
郭建烨, 郑若池. 基于改进烟花算法的薄壁件铣削加工参数优化[J]. 制造技术与机床, 2021(6): 70-74, 80.
|
|
GUO J Y, ZHENG R C. Optimization of milling parameters of thin-walled parts based on improved firework algorithm[J]. Manufacturing Technology & Machine Tool, 2021(6): 70-74, 80 (in Chinese).
|
14 |
王峰, 徐雷, 贺云翔, 等. 基于MPSO-BP对5A06铝合金薄壁件变形预测[J]. 组合机床与自动化加工技术, 2019(5): 84-89.
|
|
WANG F, XU L, HE Y X, et al. The deformation prediction of 5A06 aluminum alloy thin-wall parts based on MPSO-BP[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2019(5): 84-89 (in Chinese).
|
15 |
张俊涛. 基于数字孪生的薄壁件铣削加工变形控制研究[D]. 哈尔滨: 哈尔滨理工大学, 2022: 40-50.
|
|
ZHANG J T. Research on milling deformation control of thin-walled parts based on digital twin[D]. Harbin: Harbin University of Science and Technology, 2022: 40-50 (in Chinese).
|
16 |
GUO J, WANG B, HE Z X, et al. A novel method for workpiece deformation prediction by amending initial residual stress based on SVR-GA[J]. Advances in Manufacturing, 2021, 9(4): 483-495.
|
17 |
翟小飞, 马仕洪, 魏伟, 等. 基于神经网络和贝叶斯优化的核电站机组功率参数自动寻优方法[J]. 自动化应用, 2021(3): 51-53, 57.
|
|
ZHAI X F, MA S H, WEI W, et al. Automatic optimization method for power parameters of nuclear power plant units based on neural network and Bayesian optimization[J]. Automation Application, 2021(3): 51-53, 57 (in Chinese).
|
18 |
HAO X Z, LI Y G, LI M Q, et al. A part deformation control method via active pre-deformation based on online monitoring data[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(5): 2681-2692.
|
19 |
ZHAO Z W, LI Y G, LIU C Q, et al. On-line part deformation prediction based on deep learning[J]. Journal of Intelligent Manufacturing, 2020, 31(3): 561-574.
|
20 |
ZHAO Z W, LI Y G, LIU C Q, et al. Predicting part deformation based on deformation force data using Physics-informed Latent Variable Model[J]. Robotics and Computer-Integrated Manufacturing, 2021, 72: 102204.
|
21 |
CAO L, ZHANG X M, HUANG T, et al. Online monitoring machining errors of thin-walled workpiece: A knowledge embedded sparse Bayesian regression approach[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(3): 1259-1270.
|
22 |
YAN Q H, LUO M, TANG K. Multi-axis variable depth-of-cut machining of thin-walled workpieces based on the workpiece deflection constraint[J]. Computer-Aided Design, 2018, 100: 14-29.
|
23 |
丛靖梅, 莫蓉, 吴宝海, 等. 面向性能的压气机叶片铣削加工误差分析及统计[J]. 航空制造技术, 2017, 60(15): 38-44.
|
|
CONG J M, MO R, WU B H, et al. Performance oriented machining error analysis and statistic of compressor blade[J]. Aeronautical Manufacturing Technology, 2017, 60(15): 38-44 (in Chinese).
|
24 |
邓宇锋. 透平叶片变切削力加工参数研究[J]. 组合机床与自动化加工技术, 2015(2): 135-137, 141.
|
|
DENG Y F. Research on parameters of the alterable cutting forces in machining turbine blade[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2015(2): 135-137, 141 (in Chinese).
|
25 |
孙祺. 基于有限元方法的旋转叶片-机匣碰摩动力学研究[D]. 沈阳: 东北大学, 2018: 9-23.
|
|
SUN Q. Research on rotating blade-casing rubbing induced vibration response based on finite element method[D]. Shenyang: Northeastern University, 2018: 9-23 (in Chinese).
|
26 |
潘和林. 钛合金薄壁件铣削变形的预测与控制[D]. 济南: 山东大学, 2016: 51-66.
|
|
PAN H L. Deflection prediction and control in milling of thin-wall titanium alloy components[D]. Jinan: Shandong University, 2016: 51-66 (in Chinese).
|
27 |
XUE J K, SHEN B. A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
|
28 |
李雅丽, 王淑琴, 陈倩茹, 等. 若干新型群智能优化算法的对比研究[J]. 计算机工程与应用, 2020, 56(22): 1-12.
|
|
LI Y L, WANG S Q, CHEN Q R, et al. Comparative study of several new swarm intelligence optimization algorithms[J]. Computer Engineering and Applications, 2020, 56(22): 1-12 (in Chinese).
|
29 |
赵渊, 张夏菲, 周家启. 电网可靠性评估的非参数多变量核密度估计负荷模型研究[J]. 中国电机工程学报, 2009, 29(31): 27-33.
|
|
ZHAO Y, ZHANG X F, ZHOU J Q. Load modeling utilizing nonparametric and multivariate kernel density estimation in bulk power system reliability evaluation[J]. Proceedings of the CSEE, 2009, 29(31): 27-33 (in Chinese).
|
30 |
袁修开, 吕震宙, 池巧君. 基于核密度估计的自适应重要抽样可靠性灵敏度分析[J]. 西北工业大学学报, 2008, 26(3): 297-302.
|
|
YUAN X K, LÜ Z Z, CHI Q J. Achieving efficient estimation of reliability sensitivity of a multi-mode system without requiring knowledge of design point[J]. Journal of Northwestern Polytechnical University, 2008, 26(3): 297-302 (in Chinese).
|
31 |
岳彩旭, 张俊涛, 刘献礼, 等. 薄壁件铣削过程加工变形研究进展[J]. 航空学报, 2022, 43(4): 525164.
|
|
YUE C X, ZHANG J T, LIU X L, et al. Research progress on machining deformation of thin-walled parts in milling process[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 525164 (in Chinese).
|