郭正华1, 陈正1,2(), 曾一达1,2, 郭义乾1,2, 牛振华1,2, 杨子睿3, 李智勇4, 万骏武5
收稿日期:
2023-09-04
修回日期:
2023-10-08
接受日期:
2023-11-21
出版日期:
2023-12-16
发布日期:
2023-12-07
通讯作者:
陈正
E-mail:2203085500059@stu.nchu.edu.cn
基金资助:
Zhenghua GUO1, Zheng CHEN1,2(), Yida ZENG1,2, Yiqian GUO1,2, Zhenhua NIU1,2, Zirui YANG3, Zhiyong LI4, Junwu WAN5
Received:
2023-09-04
Revised:
2023-10-08
Accepted:
2023-11-21
Online:
2023-12-16
Published:
2023-12-07
Contact:
Zheng CHEN
E-mail:2203085500059@stu.nchu.edu.cn
Supported by:
摘要:
难熔高熵合金(RHEAs)因具备高熔点、高硬度和高温相结构稳定性成为航空航天、海洋船舶和核能工业等领域的重要材料。本文对选区激光熔化(SLM)技术制备的不同体系RHEAs进行梳理,并对其微观组织、力学性能、残余应力和耐腐蚀性能进行分析。结果表明,SLM制备的RHEAs未改变其固有相(BCC相),且枝晶形貌为树枝晶、等轴晶、胞状晶等,晶粒尺寸较电弧熔炼平均减少80%~90%;细晶强化、固溶强化等强化机制有效提升了材料的力学性能;SLM技术在制备RHEAs时,热源的局部加热和冷却会造成残余应力积累,可通过工艺参数优化、母材预热等方法降低热应力;SLM可实现难熔元素均匀分布,减缓腐蚀介质侵蚀合金表面的速率,从而增强合金的耐蚀性能。
中图分类号:
郭正华, 陈正, 曾一达, 郭义乾, 牛振华, 杨子睿, 李智勇, 万骏武. 选区激光熔化制备难熔高熵合金研究现状与展望[J]. 航空学报, 2024, 45(14): 29518.
Zhenghua GUO, Zheng CHEN, Yida ZENG, Yiqian GUO, Zhenhua NIU, Zirui YANG, Zhiyong LI, Junwu WAN. Research status and prospects of refractory high-entropy alloys prepared by selective laser melting[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 29518.
表1
近年来通过SLM技术制备RHEAs的微观结构研究汇总
合金 | 工艺窗口 | 相结构 | 枝晶形貌 | 参考文献 | |||
---|---|---|---|---|---|---|---|
VNbMoTaW | 功率P=320 W 层厚dz=30 μm 扫描间距ds=90 μm 扫描速度v=400 mm/s 其他:钨基板预热180 ℃; 层间旋转67° | BCC | 柱状晶 (横截面) 胞状晶 (顶面) | 0.22 (横截面) 0.52 | 11.818 | 3.165 8 | [ |
NbMoTaW | P=400 W dz=100 μm ds=100 μm v=250 mm/s 其他:C45钢; X和Y方向交叉扫描 | BCC | 树枝晶+片状马氏体结构枝晶 | 13.4 | 3.203 4 | [ | |
WMoTaTi | P=320 W dz=30 μm ds=80 μm v=300 mm/s 其他:基板预热200 ℃ | BCC+密排六方(Hexagonal close-packed, HCP) | 树枝晶 | [ | |||
WMoTaNbV TiC/WMoTaNbV | P=325 W dz=40 μm ds=80 μm v=300 mm/s | BCC BCC+TiO2 | 树枝晶 胞状晶 | 9.148 17.865 | [ | ||
WMoTaNbV | P=200 W dz=50 μm ds=45 μm v=100 mm/s | BCC | 树枝/胞状晶 | 16.3 | [ | ||
V0.5Nb0.5ZrTi | P=200 W dz=40 μm ds=60 μm v=300 mm/s 其他:X和Y方向交叉扫描 | BCC | 柱状晶+等轴晶 | 13.1 (柱状晶) 4.5 (等轴晶) | 7.72 | [ | |
NbMoTa NbMoTaTi NbMoTaTi NbMoTaTi0.5Ni0.5 | P=300 W dz=30 μm ds=30 μm v=300 mm/s | BCC BCC/α+Ti BCC+FCC BCC+B2+FCC | 等轴晶 等轴晶 树枝晶 树枝晶 | 26 21 8.6 8~10 | [ | ||
NbTa0.5TiMo0.5 | P=320 W dz=30 μm ds=60 μm v=500 mm/s 其他:钛基板预热200 ℃;层间旋转90 ℃ | BCC | 树枝晶 | 12.14 | [ | ||
Ti1.4Nb0.6Ta0.6Zr1.4Mo0.6 | P=360 W dz=60 μm ds=80 μm v=1 200 mm/s | BCC | 等轴晶+树枝晶 | 0.25 | [ |
表2
近年来通过SLM技术制备RHEAs的力学性能研究汇总
合金 | 屈服强度/MPa | 抗压强度/MPa | 显微硬度/HV | 延展性/% | 参考文献 |
---|---|---|---|---|---|
VNbMoTaW | 2 154 | 664 | [ | ||
NbMoTaW | 826 | [ | |||
WMoTaTi | 617.2±4.1 | [ | |||
WMoTaNbV | 614±21 | [ | |||
V0.5Nb0.5ZrTi | 1 450 | 15 | [ | ||
NbMoTa | 1 252.56 | 1 282.94 | 423.62±17.9 | 15 | [ |
NbMoTaTi | 1 201.48 | 1 380.27 | 422.06±18.5 | 23 | |
NbMoTaNi | 1 350.19 | 1 356.19 | 827.2±15.6 | 11 | |
NbMoTaTi0.5Ni0.5 | 1 750.46 | 2 277.79 | 628.4±11.4 | 15 | |
NbTa0.5TiMo0.2 | 1 298 | 2 455 | 452.90 | [ | |
NbTa0.5TiMo0.5 | 1 534 | 2 596 | 325.16 | ||
NbTa0.5TiMo1.0 | 1 609 | 335.20 | 25 | ||
Ti1.4Nb0.6Ta0.6Zr1.4Mo0.6 | 1 690±78 | [ |
1 | 鲁一荻, 张骁勇, 侯硕, 等. 高熵合金的发展及工业应用展望[J]. 稀有金属材料与工程, 2021, 50(1): 333-341. |
LU Y D, ZHANG X Y, HOU S, et al. Perspective on industrial applications and research progress of high-entropy alloys[J]. Rare Metal Materials and Engineering, 2021, 50(1): 333-341 (in Chinese). | |
2 | ZHEN Y Q, WANG K, XU G P, et al. Effect of in-situ nanoparticles induced by Ti addition on the microstructure and tribological properties of FeCrB alloys[J]. Journal of Materials Research and Technology, 2024, 29: 5354-5368. |
3 | TRINK B, WEIßENSTEINER I, UGGOWITZER P J, et al. Processing and microstructure-property relations of Al-Mg-Si-Fe crossover alloys[J]. Acta Materialia, 2023, 257: 119160. |
4 | WU D, HAO M Y, ZHANG T L, et al. Heterostructures enhance simultaneously strength and ductility of a commercial titanium alloy[J]. Acta Materialia, 2023, 257: 119182. |
5 | HE J Y, LIU W H, WANG H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system[J]. Acta Materialia, 2014, 62: 105-113. |
6 | YEH J W. Alloy design strategies and future trends in high-entropy alloys[J]. JOM, 2013, 65(12): 1759-1771. |
7 | CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering: A, 2004, 375-377: 213-218. |
8 | YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. |
9 | 庞景宇. 难熔中高熵合金微观结构、力学性能及变形机制研究[D]. 合肥: 中国科学技术大学, 2022. |
PANG J Y. Investigation on the microstructure, mechanical properties and deformation mechanisms of refractory medium/high entropy alloys[D]. Hefei: University of Science and Technology of China, 2022 (in Chinese). | |
10 | BOLTZMANN L. The second law of thermodynamics[M]∥MCGUINNESS B, ed. Theoretical Physics and Philosophical Problems. Dordrecht: Springer Netherlands, 1974: 13-32. |
11 | ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61: 1-93. |
12 | YEH J W, CHEN Y L, LIN S J, et al. High-entropy alloys—A new era of exploitation[J]. Materials Science Forum, 2007, 560: 1-9. |
13 | TUNG C C, YEH J W, SHUN T T, et al. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system[J]. Materials Letters, 2007, 61(1): 1-5. |
14 | LIU Y, LIU W, ZHOU Q Y, et al. An initio study of thermodynamic and fracture properties of CrFeCoNiMn x (0≤x≤3) high-entropy alloys[J]. Journal of Materials Research and Technology, 2022, 17: 498-506. |
15 | LIN D Y, XU L Y, JING H Y, et al. A strong, ductile, high-entropy FeCoCrNi alloy with fine grains fabricated via additive manufacturing and a single cold deformation and annealing cycle[J]. Additive Manufacturing, 2020, 36: 101591. |
16 | DENG N, WANG J, WANG J X, et al. Effect of high magnetic field assisted heat treatment on microstructure and properties of AlCoCrCuFeNi high-entropy alloy[J]. Materials Letters, 2021, 303: 130540. |
17 | LIANG A Y, GOODELMAN D C, HODGE A M, et al. CoFeNiTi x and CrFeNiTi x high entropy alloy thin films microstructure formation[J]. Acta Materialia, 2023, 257: 119163. |
18 | GHOLIZADEH R, YOSHIDA S, BAI Y, et al. Global understanding of deformation behavior in CoCrFeMnNi high entropy alloy under high-strain torsion deformation at a wide range of elevated temperatures[J]. Acta Materialia, 2023, 243: 118514. |
19 | SENKOV O N, WILKS G B, MIRACLE D B, et al. Refractory high-entropy alloys[J]. Intermetallics, 2010, 18(9): 1758-1765. |
20 | REN X Q, LI Y G, QI Y F, et al. Review on preparation technology and properties of refractory high entropy alloys[J]. Materials, 2022, 15(8): 2931. |
21 | SRIKANTH M, ANNAMALAI A R, MUTHUCHAMY A, et al. A review of the latest developments in the field of refractory high-entropy alloys[J]. Crystals, 2021, 11(6): 612. |
22 | ZHENG W J, LÜ S L, WU S S, et al. Development of MoNbVTa x refractory high entropy alloy with high strength at elevated temperature[J]. Materials Science and Engineering: A, 2022, 850: 143554. |
23 | POLE M, SADEGHILARIDJANI M, SHITTU J, et al. High temperature wear behavior of refractory high entropy alloys based on 4-5-6 elemental palette[J]. Journal of Alloys and Compounds, 2020, 843: 156004. |
24 | LV S S, ZU Y F, CHEN G Q, et al. A multiple nonmetallic atoms co-doped CrMoNbWTi refractory high-entropy alloy with ultra-high strength and hardness[J]. Materials Science and Engineering: A, 2020, 795: 140035. |
25 | GORR B, MUELLER F, CHRIST H J, et al. High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb-20Mo-20Cr-20Ti-20Al with and without Si addition[J]. Journal of Alloys and Compounds, 2016, 688: 468-477. |
26 | SONAR T, IVANOV M, TROFIMOV E, et al. An overview of microstructure, mechanical properties and processing of high entropy alloys and its future perspectives in aeroengine applications[J]. Materials Science for Energy Technologies, 2024, 7: 35-60. |
27 | DEWANGAN S K, MANGISH A, KUMAR S, et al. A review on high-temperature applicability: A milestone for high entropy alloys[J]. Engineering Science and Technology, an International Journal, 2022, 35: 101211. |
28 | OSMAN H, LIU L. Additive manufacturing of high-entropy alloy composites: A review[J]. Transactions of Nonferrous Metals Society of China, 2023, 33(1): 1-24. |
29 | FERREIRÓS P A, VON TIEDEMANN S O, PARKES N, et al. VNbCrMo refractory high-entropy alloy for nuclear applications[J]. International Journal of Refractory Metals and Hard Materials, 2023, 113: 106200. |
30 | GE S F, FU H M, ZHANG L, et al. Effects of Al addition on the microstructures and properties of MoNbTaTiV refractory high entropy alloy[J]. Materials Science and Engineering: A, 2020, 784: 139275. |
31 | MOTALLEBZADEH A, PEIGHAMBARDOUST N S, SHEIKH S, et al. Microstructural, mechanical and electrochemical characterization of TiZrTaHfNb and Ti1.5ZrTa0.5Hf0.5Nb0.5 refractory high-entropy alloys for biomedical applications[J]. Intermetallics, 2019, 113: 106572. |
32 | WU S Y, QIAO D X, ZHANG H T, et al. Microstructure and mechanical properties of C x Hf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures[J]. Journal of Materials Science & Technology, 2022, 97: 229-238. |
33 | 彭立明, 邓庆琛, 吴玉娟, 等. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54. |
PENG L M, DENG Q C, WU Y J, et al. Additive manufacturing of magnesium alloys by selective laser melting technology: A review[J]. Acta Metallurgica Sinica, 2023, 59(1): 31-54 (in Chinese). | |
34 | MA X B, XIN D Q, YE J J, et al. Comparative study of the microstructure evolution of dual-phase Al-Co-Cr-Fe-Ni high-entropy alloy prepared by direct laser deposition and vacuum arc melting[J]. Materials Letters, 2022, 326: 132951. |
35 | WANG M, MA Z L, XU Z Q, et al. Microstructures and mechanical properties of HfNbTaTiZrW and HfNbTaTiZrMoW refractory high-entropy alloys[J]. Journal of Alloys and Compounds, 2019, 803: 778-785. |
36 | ZHANG P, LI Y T, CHEN Z, et al. Oxidation response of a vacuum arc melted NbZrTiCrAl refractory high entropy alloy at 800-1 200 ℃[J]. Vacuum, 2019, 162: 20-27. |
37 | MEINERS W, WISSENBACH K, GASSER A. Shaped body especially prototype or replacement part production: DE19649849C1[P]. 1998-02-12. |
38 | GUO N N, LEU M C. Additive manufacturing: technology, applications and research needs[J]. Frontiers of Mechanical Engineering, 2013, 8(3): 215-243. |
39 | GIBSON I, ROSEN D, STUCKER B, et al. Development of additive manufacturing technology[M]∥Additive Manufacturing Technologies. Cham: Springer, 2021: 23-51. |
40 | 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225. |
TANG W N, MO N, HOU J. Research progress of additively manufactured magnesium alloys: A review[J]. Acta Metallurgica Sinica, 2023, 59(2): 205-225 (in Chinese). | |
41 | 苏悦. 激光选区熔化成形Al x CrCuFeNi2高熵合金的组织与性能研究[D]. 武汉: 华中科技大学, 2021. |
SU Y. Research on microstructure and properties of Al x CrCuFeNi2 high entropy alloys fabricated via selective laser melting[D].Wuhan: Huazhong University of Science and Technology, 2021 (in Chinese). | |
42 | 王福超. 激光选区熔化CoCrFeNiMn高熵合金成形工艺优化及性能表征[D]. 武汉: 华中科技大学, 2019. |
WANG F C. Optimization of forming process and characterization of CoCrFeNiMn high entropy alloy fabricated by selective laser melting[D]. Wuhan: Huazhong University of Science and Technology, 2019 (in Chinese). | |
43 | 李涤尘, 鲁中良, 田小永, 等. 增材制造: 面向航空航天制造的变革性技术[J]. 航空学报, 2022, 43(4): 525387. |
LI D C, LU Z L, TIAN X Y, et al. Additive manufacturing—Revolutionary technology for leading aerospace manufacturing[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 525387 (in Chinese). | |
44 | 谭永华, 赵剑, 张武昆, 等. 融合增材制造的液体火箭发动机创新设计方法与应用[J]. 火箭推进, 2023, 49(4): 1-16, 123. |
TAN Y H, ZHAO J, ZHANG W K, et al. Innovative design method and application of liquid rocket engine integrated additive manufacturing[J]. Journal of Rocket Propulsion, 2023, 49(4): 1-16, 123 (in Chinese). | |
45 | 张武昆, 谭永华, 高玉闪, 等. 液体火箭发动机增材制造技术研究进展[J]. 推进技术, 2022, 43(5): 29-44. |
ZHANG W K, TAN Y H, GAO Y S, et al. Research progress of additive manufacturing technology in liquid rocket engine[J]. Journal of Propulsion Technology, 2022, 43(5): 29-44 (in Chinese). | |
46 | GU D D, SHI Q M, LIN K J, et al. Microstructure and performance evolution and underlying thermal mechanisms of Ni-based parts fabricated by selective laser melting[J]. Additive Manufacturing, 2018, 22: 265-278. |
47 | JIA Q B, ROMETSCH P, KÜRNSTEINER P, et al. Selective laser melting of a high strength Al Mn Sc alloy: Alloy design and strengthening mechanisms[J]. Acta Materialia, 2019, 171: 108-118. |
48 | JOSEPH J, HAGHDADI N, SHAMLAYE K, et al. The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures[J]. Wear, 2019, 428-429: 32-44. |
49 | JIA Q B, ZHANG F, ROMETSCH P, et al. Precipitation kinetics, microstructure evolution and mechanical behavior of a developed Al-Mn-Sc alloy fabricated by selective laser melting[J]. Acta Materialia, 2020, 193: 239-251. |
50 | YURCHENKO N, PANINA E, ZHEREBTSOV S, et al. Design and characterization of eutectic refractory high entropy alloys[J]. Materialia, 2021, 16: 101057. |
51 | TUNES M A, VISHNYAKOV V M. Microstructural origins of the high mechanical damage tolerance of NbTaMoW refractory high-entropy alloy thin films[J]. Materials & Design, 2019, 170: 107692. |
52 | MONTERO J, EK G, SAHLBERG M, et al. Improving the hydrogen cycling properties by Mg addition in Ti-V-Zr-Nb refractory high entropy alloy[J]. Scripta Materialia, 2021, 194: 113699. |
53 | WANG T T, JIANG W T, WANG X H, et al. Microstructure and properties of Al0.5NbTi3V x Zr2 refractory high entropy alloys combined with high strength and ductility[J]. Journal of Materials Research and Technology, 2023, 24: 1733-1743. |
54 | XIAO B, JIA W P, WANG J, et al. Selective electron beam melting of WMoTaNbVFeCoCrNi refractory high-entropy alloy[J]. Materials Characterization, 2022, 193: 112278. |
55 | GU P F, QI T B, CHEN L, et al. Manufacturing and analysis of VNbMoTaW refractory high-entropy alloy fabricated by selective laser melting[J]. International Journal of Refractory Metals and Hard Materials, 2022, 105: 105834. |
56 | ZHANG H, ZHAO Y Z, HUANG S, et al. Manufacturing and analysis of high-performance refractory high-entropy alloy via selective laser melting (SLM)[J]. Materials, 2019, 12(5): 720. |
57 | LIU C, ZHU K Y, DING W W, et al. Additive manufacturing of WMoTaTi refractory high-entropy alloy by employing fluidised powders[J]. Powder Metallurgy, 2022, 65(5): 413-425. |
58 | CHEN L, YANG Z W, LU L K, et al. Effect of TiC on the high-temperature oxidation behavior of WMoTaNbV refractory high entropy alloy fabricated by selective laser melting[J]. International Journal of Refractory Metals and Hard Materials, 2023, 110: 106027. |
59 | HUBER F, BARTELS D, SCHMIDT M. In-situ alloy formation of a WMoTaNbV refractory metal high entropy alloy by laser powder bed fusion (PBF-LB/M)[J]. Materials, 2021, 14(11): 3095. |
60 | ZHU P, YU Y, ZHANG C, et al. V0.5Nb0.5ZrTi refractory high-entropy alloy fabricated by laser addictive manufacturing using elemental powders[J]. International Journal of Refractory Metals and Hard Materials, 2023, 113: 106220. |
61 | ZHANG H, ZHAO Y Z, CAI J L, et al. High-strength NbMoTaX refractory high-entropy alloy with low stacking fault energy eutectic phase via laser additive manufacturing[J]. Materials & Design, 2021, 201: 109462. |
62 | WANG F, YUAN T C, LI R D, et al. Effect of Mo on the morphology, microstructure and mechanical properties of NbTa0.5TiMo x refractory high entropy alloy fabricated by laser powder bed fusion using elemental mixed powders[J]. International Journal of Refractory Metals and Hard Materials, 2023, 111: 106107. |
63 | ISHIMOTO T, OZASA R, NAKANO K, et al. Development of TiNbTaZrMo bio-high entropy alloy (BioHEA) super-solid solution by selective laser melting, and its improved mechanical property and biocompatibility[J]. Scripta Materialia, 2021, 194: 113658. |
64 | SENKOV O N, WILKS G B, SCOTT J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19(5): 698-706. |
65 | GHASHGHAY B R, ABEDI H R, SHABESTARI S G. On the capability of grain refinement during selective laser melting of AlSi10Mg alloy[J]. Journal of Materials Research and Technology, 2023, 24: 9722-9730. |
66 | CHANG K, TAN Y, MA L, et al. A nickel-base superalloy with refined microstructures and excellent mechanical properties prepared by selective laser melting[J]. Materials Letters, 2022, 324: 132700. |
67 | YUAN B L, LI C Q, DONG Y, et al. Selective laser melting of the Al0.3CoCrFeNiCu high-entropy alloy: Processing parameters, microstructure and mechanical properties[J]. Materials & Design, 2022, 220: 110847. |
68 | WANG D, SONG C H, YANG Y Q, et al. Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts[J]. Materials & Design, 2016, 100: 291-299. |
69 | LI C Q, DENG Y S, CHEN M C, et al. Excellent corrosion resistance of Al0.3CoCrFeNiCu high-entropy alloy fabricated by selective laser melting and annealing treatment[J]. Materials Letters, 2023, 348: 134711. |
70 | DU Y H, GUO C H, JIANG F C, et al. Effect of heat treatment on microstructure and properties of Al0.5CoCrFeNi high entropy alloy fabricated by selective laser melting[J]. Materials Science and Engineering: A, 2023, 882: 145466. |
71 | ZHANG H, CAI J L, GENG J L, et al. Study on annealing treatment of NbMoTaTiNi high-entropy alloy with ultra-high strength disordered-ordered transition structure for additive manufacturing[J]. Journal of Alloys and Compounds, 2023, 941: 168810. |
72 | KHODASHENAS H, MIRZADEH H. Post-processing of additively manufactured high-entropy alloys—A review[J]. Journal of Materials Research and Technology, 2022, 21: 3795-3814. |
73 | CHENG W, JI L F, ZHANG L T, et al. Refractory high-entropy alloys fabricated using laser technologies: A concrete review[J]. Journal of Materials Research and Technology, 2023, 24: 7497-7524. |
74 | ONODERA R, ASAKAWA S, SEGAWA R, et al. Zinc ions have a potential to attenuate both Ni ion uptake and Ni ion-induced inflammation[J]. Scientific Reports, 2018, 8(1): 2911. |
75 | AU A, HA J, HERNANDEZ M, et al. Nickel and vanadium metal ions induce apoptosis of T-lymphocyte Jurkat cells[J]. Journal of Biomedical Materials Research Part A, 2006, 79(3): 512-521. |
76 | NAGASE T, TODAI M, HORI T, et al. Microstructure of equiatomic and non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials[J]. Journal of Alloys and Compounds, 2018, 753: 412-421. |
77 | KUMAR P, PATEL M, JAIN N K, et al. Bio-tribological characteristics of 3D-printed Ti-Ta-Nb-Mo-Zr high entropy alloy in human body emulating biofluids for implant applications[J]. Journal of Bio-and Tribo-Corrosion, 2022, 9(1): 21. |
78 | GOKCEKAYA O, ISHIMOTO T, NISHIKAWA Y, et al. Novel single crystalline-like non-equiatomic TiZrHfNbTaMo bio-high entropy alloy (BioHEA) developed by laser powder bed fusion[J]. Materials Research Letters, 2023, 11(4): 274-280. |
79 | HORI T, NAGASE T, TODAI M, et al. Development of non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials[J]. Scripta Materialia, 2019, 172: 83-87. |
80 | FENG J Y, WEI D X, ZHANG P L, et al. Preparation of TiNbTaZrMo high-entropy alloy with tunable Young’s modulus by selective laser melting[J]. Journal of Manufacturing Processes, 2023, 85: 160-165. |
81 | KORKMAZ M E, GUPTA M K, ROBAK G, et al. Development of lattice structure with selective laser melting process: A state of the art on properties, future trends and challenges[J]. Journal of Manufacturing Processes, 2022, 81: 1040-1063. |
82 | 郑玉峰, 夏丹丹, 谌雨农, 等. 增材制造可降解金属医用植入物[J]. 金属学报, 2021, 57(11): 1499-1520. |
ZHENG Y F, XIA D D, SHEN Y N, et al. Additively manufactured biodegrabable metal implants[J]. Acta Metallurgica Sinica, 2021, 57(11): 1499-1520 (in Chinese). | |
83 | 孙聪. 高超声速飞行器强度技术的现状、挑战与发展趋势[J]. 航空学报, 2022, 43(6): 527590. |
SUN C. Development status, challenges and trends of strength technology for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 527590 (in Chinese). | |
84 | 瞿绍奇, 孙英超, 邬亨贵, 等. 飞行器径向连接螺栓振动断裂分析[J]. 航空学报, 2021, 42(5): 524431. |
QU S Q, SUN Y C, WU H G, et al. Analysis of vibration fracture of radial connection bolt of aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524431 (in Chinese). | |
85 | 曹奇凯, 王鄢, 姚念奎, 等. 先进舰载战斗机强度设计技术发展与实践[J]. 航空学报, 2021, 42(8): 525793. |
CAO Q K, WANG Y, YAO N K, et al. Development and application of strength design technology of advanced carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525793 (in Chinese). | |
86 | SHU T, HU N, LIU F, et al. Nanoparticles induced intragranular and dislocation substructures in powder bed fusion for strengthening of high-entropy-alloy[J]. Materials Science and Engineering: A, 2023, 878: 145110. |
87 | YU T, ZHOU G M, CHENG Y G, et al. Microstructure and properties of AlCoCrFeNi2.1 eutectic high entropy alloy manufactured by selective laser melting[J]. Optics & Laser Technology, 2023, 163: 109396. |
88 | ZHANG Z B, WAN Y X, SUN B, et al. Effect of Y0.5Gd0.5TaO4 additions on the microstructures, mechanical properties and thermophysical properties of NbMoTaW refractory high-entropy alloy[J]. International Journal of Refractory Metals and Hard Materials, 2023, 111: 106111. |
89 | JI W M, WU M S. Retainable short-range order effects on the strength and toughness of NbMoTaW refractory high-entropy alloys[J]. Intermetallics, 2022, 150: 107707. |
90 | BI L X, LI X N, HU Y L, et al. Weak enthalpy-interaction-element-modulated NbMoTaW high-entropy alloy thin films[J]. Applied Surface Science, 2021, 565: 150462. |
91 | XU J T, DUAN R, FENG K, et al. Enhanced strength and ductility of laser powder bed fused NbMoTaW refractory high-entropy alloy via carbon microalloying[J]. Additive Manufacturing Letters, 2022, 3: 100079. |
92 | YANG X G, ZHOU Y, YANG Z, et al. Achieving high strength and ductility in Ni10Cr6WFe9Ti high entropy alloy by regulating lattice distortion[J]. Materials Letters, 2023, 330: 133394. |
93 | 葛绍璠. Mo-Nb-Ta-Ti-V系难熔高熵合金的合成及性能研究[D]. 合肥: 中国科学技术大学, 2022. |
GE S F. Synthesis and properties of Mo-Nb-Ta-Ti-V refractory high-entropy alloy[D]. Hefei: University of Science and Technology of China, 2022 (in Chinese). | |
94 | 宋波, 张金良, 章媛洁, 等. 金属激光增材制造材料设计研究进展[J]. 金属学报, 2023, 59(1): 1-15. |
SONG B, ZHANG J L, ZHANG Y J, et al. Research progress of materials design for metal laser additive manufacturing[J]. Acta Metallurgica Sinica, 2023, 59(1): 1-15 (in Chinese). | |
95 | MERCELIS P, KRUTH J P. Residual stresses in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal, 2006, 12(5): 254-265. |
96 | 张兴寿, 王勤英, 郑淮北, 等. 激光增材制造合金材料残余应力及应力腐蚀研究现状[J]. 激光与光电子学进展, 2022, 59(13): 1300002. |
ZHANG X S, WANG Q Y, ZHENG H B, et al. Residual stress and stress corrosion of alloy materials in laser additive manufacturing[J]. Laser & Optoelectronics Progress, 2022, 59(13): 1300002 (in Chinese). | |
97 | LIU F C, LIN X, YANG G L, et al. Microstructure and residual stress of laser rapid formed Inconel 718 nickel-base superalloy[J]. Optics & Laser Technology, 2011, 43(1): 208-213. |
98 | 谷朋飞. 选区激光熔化成形VNbMoTaW难熔高熵合金组织及性能研究[D]. 镇江: 江苏大学, 2022. |
GU P F. Microstructure and properties of VNbMoTaW refractory high-entropy alloy fabricated by selective laser melting[D].Zhenjiang: Jiangsu University, 2022 (in Chinese). | |
99 | ZOU X, CHANG T F, YAN Z, et al. Control of thermal strain and residual stress in pulsed-wave direct laser deposition[J]. Optics & Laser Technology, 2023, 163: 109386. |
100 | VYATSKIKH A L, WANG X, HALEY J, et al. Residual stress mitigation in directed energy deposition[J]. Materials Science and Engineering: A, 2023, 871: 144845. |
101 | ZHANG H, XU W, XU Y J, et al. The thermal-mechanical behavior of WTaMoNb high-entropy alloy via selective laser melting (SLM): Experiment and simulation[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(1-4): 461-474. |
102 | KRUTH J P, DECKERS J, YASA E, et al. Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226(6): 980-991. |
103 | ZHOU L B, SUN J S, CHEN J, et al. Study of substrate preheating on the microstructure and mechanical performance of Ti-15Mo alloy processed by selective laser melting[J]. Journal of Alloys and Compounds, 2022, 928: 167130. |
104 | CHEN L, GU P F, GE T, et al. Effect of laser shock peening on microstructure and mechanical properties of TiC strengthened inconel 625 alloy processed by selective laser melting[J]. Materials Science and Engineering: A, 2022, 835: 142610. |
105 | ZHAI W G, ZHOU W, NAI S M L. Grain refinement and strengthening of 316L stainless steel through addition of TiC nanoparticles and selective laser melting[J]. Materials Science and Engineering: A, 2022, 832: 142460. |
106 | 谭晓明, 张丹峰, 战贵盼, 等. 海洋环境与疲劳载荷联合作用下喷丸超高强度钢损伤机制[J]. 航空学报, 2020, 41(8): 223631. |
TAN X M, ZHANG D F, ZHAN G P, et al. Damage mechanism of shot peened ultra-high strength steel under combined action of marine environment and fatigue load[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 223631 (in Chinese). | |
107 | 陈跃良, 陈亮, 卞贵学, 等. 先进舰载战斗机腐蚀防护控制与日历寿命设计[J]. 航空学报, 2021, 42(8): 525786. |
CHEN Y L, CHEN L, BIAN G X, et al. Corrosion protection control and calendar life design of advanced carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525786 (in Chinese). | |
108 | GAO Y, CHONG K, QIAO L J, et al. Synthesis and corrosion behavior of Mo15Nb20Ta10Ti35V20 refractory high entropy alloy[J]. Materials & Design, 2023, 228: 111820. |
109 | PEIGHAMBARDOUST N S, ALAMDARI A A, UNAL U, et al. In vitro biocompatibility evaluation of Ti1.5ZrTa0.5Nb0.5Hf0.5 refractory high-entropy alloy film for orthopedic implants: Microstructural, mechanical properties and corrosion behavior[J]. Journal of Alloys and Compounds, 2021, 883: 160786. |
110 | WANG G Y, XU J, CHEN Y H, et al. Assessment of the tribocorrosion performance of a (TiZrNbTaMo)C refractory high entropy alloy carbide coating in a marine environment[J]. Journal of Alloys and Compounds, 2023, 965: 171342. |
111 | RON T, LEON A, POPOV V, et al. Synthesis of refractory high-entropy alloy WTaMoNbV by powder bed fusion process using mixed elemental alloying powder[J]. Materials, 2022, 15(12): 4043. |
[1] | 樊哲铭, 杨未柱, 曾延, 赵哲南, 李磊. 激光熔覆修复GH4169合金各向异性拉伸性能[J]. 航空学报, 2024, 45(8): 429129-429129. |
[2] | 滕俊飞, 李家豪, 周惠焱, 伍大为, 徐海涛, 林铁松, 黄永德. TLP扩散焊接工艺参数对GH5188高温合金接头微观组织及力学性能的影响[J]. 航空学报, 2024, 45(8): 429205-429205. |
[3] | 王文煜, 李锋, 任飞翔, 韦兴宇, 熊健. 轻质高强复合材料网格加筋壳体结构设计方法及力学性能研究进展[J]. 航空学报, 2024, 45(17): 530001-530001. |
[4] | 张仲玺, 王帅钦, 赵慧娟, 张定华, 汪龙皓. 薄壁零件残余应力演化机理及变形控制方法[J]. 航空学报, 2024, 45(13): 629365-629365. |
[5] | 董立卓, 张思琪, 张钊, 吴宝海. 机理⁃数据混合驱动的叶片加工变形预测方法[J]. 航空学报, 2024, 45(13): 629037-629037. |
[6] | 杜随更, 胡弘毅, 丁珂. γ⁃TiAl与Ti2AlNb线性摩擦焊接头微观组织[J]. 航空学报, 2024, 45(13): 629347-629347. |
[7] | 李坤, 左春林, 廖若冰, 吉辰, 蒋斌, 潘复生. 增材制造铝合金残余应力研究现状及展望[J]. 航空学报, 2024, 45(12): 29380-029380. |
[8] | 张志强, 于子鸣, 张天刚, 杨倩, 王浩. 激光熔覆TiC x 增强钛基复合涂层组织与增强相第一性原理研究[J]. 航空学报, 2023, 44(8): 427294-427294. |
[9] | 赵楠, 李多生, 叶寅, 刘奋成, 江五贵. 激光选区熔化成形GH5188合金微观组织及性能[J]. 航空学报, 2023, 44(19): 428332-428332. |
[10] | 孙洋, 黄建, 韩晨晨, 赵振强, 周海丽, 孙方方, 李超, 张超, 张立泉. 二维与三维机织复合材料面内力学性能对比[J]. 航空学报, 2023, 44(18): 428267-428267. |
[11] | 陈江波, 曾凯, 邢保英, 张洪申, 丁燕芳, 何晓聪. 铝合金-胶膜压印/粘接复合连接工艺及接头失效分析[J]. 航空学报, 2023, 44(14): 428029-428029. |
[12] | 路来骁, 徐长官, 刘建华, 秦美镇, 吕英波, 阎玉芹. 初始应力状态对薄壁件双侧滚压影响规律[J]. 航空学报, 2023, 44(10): 427415-427415. |
[13] | 刘增飞, 刘凯, 张斌斌, 李雪枫, 葛敬冉, 黄建, 李超, 孙新杨, 孙煜, 梁军. 纱线规格对3D机织复合材料拉伸性能的影响[J]. 航空学报, 2022, 43(6): 525453-525453. |
[14] | 刘振东, 郑锡涛, 范雯静, 张东健. 固化残余应力对无人机复合材料机翼强度的影响[J]. 航空学报, 2022, 43(6): 526117-526117. |
[15] | 赵天, 李营, 张超, 姚辽军, 黄怿行, 黄治新, 陈诚, 汪万栋, 祖磊, 周华民, 裘进浩, 邱志平, 方岱宁. 高性能航空复合材料结构的关键力学问题研究进展[J]. 航空学报, 2022, 43(6): 526851-526851. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学