1 |
ZHANG X S, MA Y E, YANG M, et al. A review of in-plane biaxial fatigue behavior of metallic materials[J]. Theoretical and Applied Fracture Mechanics, 2023, 123: 103726.
|
2 |
WU K L, LI B, GUO J J. Fatigue crack growth and fracture of internal fixation materials in environments-a review[J]. Materials, 2021, 14(1): 176.
|
3 |
MA Y F, GUO Z Z, WANG L, et al. Probabilistic life prediction for reinforced concrete structures subjected to seasonal corrosion-fatigue damage[J]. Journal of Structural Engineering, 2020, 146(7): 04020117.
|
4 |
孙侠生, 苏少普, 孙汉斌, 等. 国外航空疲劳研究现状及展望[J]. 航空学报, 2021, 42(5): 524791.
|
|
SUN X S, SU S P, SUN H B, et al. Current status and prospect of overseas research on aeronautical fatigue[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524791 (in Chinese).
|
5 |
GREITEMEIER D, DALLE DONNE C, SYASSEN F, et al. Effect of surface roughness on fatigue performance of additive manufactured Ti–6Al–4V[J]. Materials Science and Technology, 2016, 32(7): 629-634.
|
6 |
WAN H Y, CHEN G F, LI C P, et al. Data-driven evaluation of fatigue performance of additive manufactured parts using miniature specimens[J]. Journal of Materials Science & Technology, 2019, 35(6): 1137-1146.
|
7 |
YE W L, ZHU S P, NIU X P, et al. Fatigue life prediction of notched components under size effect using stress gradient-based approach[J]. International Journal of Fracture, 2022, 234(1): 249-261.
|
8 |
JIANG L K, LIU W C, WU G H, et al. Effect of chemical composition on the microstructure, tensile properties and fatigue behavior of sand-cast Mg-Gd-Y-Zr alloy[J]. Materials Science and Engineering: A, 2014, 612: 293-301.
|
9 |
NADOT Y. Fatigue from defect: Influence of size, type, position, morphology and loading[J]. International Journal of Fatigue, 2022, 154: 106531.
|
10 |
XIAO G J, CHEN B Q, LI S C, et al. Fatigue life analysis of aero-engine blades for abrasive belt grinding considering residual stress[J]. Engineering Failure Analysis, 2022, 131: 105846.
|
11 |
ZHAO B F, SONG J X, XIE L Y, et al. Surface roughness effect on fatigue strength of aluminum alloy using revised stress field intensity approach[J]. Scientific Reports, 2021, 11: 19279.
|
12 |
ZHU S P, AI Y, LIAO D, et al. Recent advances on size effect in metal fatigue under defects: A review[J]. International Journal of Fracture, 2022, 234(1-2): 21-43.
|
13 |
ZHANG W J, HU Y Y, MA X F, et al. Very-high-cycle fatigue behavior of AlSi10Mg manufactured by selected laser melting: Crystal plasticity modeling[J]. International Journal of Fatigue, 2021, 145: 106109.
|
14 |
PENG X, WU S C, QIAN W J, et al. The potency of defects on fatigue of additively manufactured metals[J]. International Journal of Mechanical Sciences, 2022, 221: 107185.
|
15 |
WU Z K, WU S C, BAO J G, et al. The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion[J]. International Journal of Fatigue, 2021, 151: 106317.
|
16 |
QIAN W J, WU S C, WU Z K, et al. X-ray imaging of fatigue crack growth from multiple defects in additively manufactured AlSi10Mg alloy[J]. International Journal of Fatigue, 2022, 155: 106616.
|
17 |
CHIOCCA A, FRENDO F, AIELLO F, et al. Influence of residual stresses on the fatigue life of welded joints: Numerical simulation and experimental tests[J]. International Journal of Fatigue, 2022, 162: 106901.
|
18 |
BASQUIN O. The exponential law of endurance tests[J]. American Society for Testing and Materials Proceedings,1910,10: 625-630.
|
19 |
COFFN L F. A study of the effects of cyclic thermal stresses on aductile metal[J]. Transactions of the ASME, 1954;76:931-950.
|
20 |
MANSON S S. Behavior of materials under conditions of thermal stress[R].Washington,D.C.: NACA,1953.
|
21 |
MA M Z, LIU X T, YU X G, et al. Fatigue life prediction for notched specimen considering modified critical plane method[J]. Fatigue & Fracture of Engineering Materials & Structures, 2023, 46(3): 1031-1044.
|
22 |
OU C Y, VOOTHALURU R, LIU C R. Fatigue crack initiation of metals fabricated by additive manufacturing—A crystal plasticity energy-based approach to IN718 life prediction[J]. Crystals, 2020, 10(10): 905.
|
23 |
GOLAHMAR A, NIORDSON C F, MARTÍNEZ-PAÑEDA E. A phase field model for high-cycle fatigue: Total-life analysis[J]. International Journal of Fatigue, 2023, 170: 107558.
|
24 |
SHERIDAN L, GOCKEL J E, SCOTT-EMUAKPOR O E. Stress-defect-life interactions of fatigued additively manufactured alloy 718[J]. International Journal of Fatigue, 2021, 143: 106033.
|
25 |
于宜冰,贺自强,贺小帆, 等. 基于损伤力学的轴承钢旋弯疲劳寿命预测[J/OL].北京航空航天大学学报:1-14[2023-04-24].DOI:10.13700/j.bh.1001-5965.2022.0639 .
|
|
YU Y B, HE Z Q, HE X F, et al. Rotating bending fatigue life prediction of bearing steel based on damage mechanics[J/OL]. Journal of Beijing University of Aeronautics and Astronautic:1-14[2023-04-24].DOI:10.13700/j.bh.1001-5965.2022.0639 (in Chinese).
|
26 |
GAO T Z, TONG Y, ZHAN Z X, et al. Development of a non-local approach for life prediction of notched specimen considering stress/strain gradient and elastic-plastic fatigue damage[J]. International Journal of Damage Mechanics, 2022, 31(7): 1057-1081.
|
27 |
梅威威, 胡伟平, 高同州, 等. 考虑孔洞影响的铸造镁合金ZM6疲劳寿命预估方法[J]. 固体力学学报, 2022, 43(5): 585-602.
|
|
MEI W W, HU W P, GAO T Z, et al. Study on fatigue life prediction method for casting magnesium alloy ZM6 considering the effect of internal pores[J]. Chinese Journal of Solid Mechanics, 2022, 43(5): 585-602 (in Chinese).
|
28 |
ZHAN Z X, HU W P, MENG Q C. Data-driven fatigue life prediction in additive manufactured titanium alloy: A damage mechanics based machine learning framework[J]. Engineering Fracture Mechanics, 2021, 252: 107850.
|
29 |
MURAKAMI S. Continuum damage mechanics: A continuum mechanics approach to the analysis of damage and fracture[M]. Berlin: Springer, 2012.
|
30 |
XIAO Y C, LI S, GAO Z. A continuum damage mechanics model for high cycle fatigue[J]. International Journal of Fatigue, 1998, 20(7): 503-508.
|
31 |
U.S. Department of Defense. Military handbook: Metallic materials and elements for aerospace vehicle structures[R]. Washington, D.C.: U.S. Department of Defense, 1990.
|
32 |
LAZAN B, BLATHERWICK A A. Fatigue properties of aluminum alloys at various direct-stress ratios. part 1. Rolled alloys [R]. Minneapolis :Minnesota Institute of Technologies, 1952.
|