1 |
纪宇晗, 孙侠生, 俞笑, 等. 双碳战略下的新能源航空发展展望[J]. 航空科学技术, 2022, 33(12): 1-11.
|
|
JI Y H, SUN X S, YU X, et al. Development prospect of new energy aviation under carbon peaking and carbon neutrality goals[J]. Aeronautical Science & Technology, 2022, 33(12): 1-11 (in Chinese).
|
2 |
BRAVO-MOSQUERA P D, CATALANO F M, ZINGG D W. Unconventional aircraft for civil aviation: A review of concepts and design methodologies[J]. Progress in Aerospace Sciences, 2022, 131: 100813.
|
3 |
夏明, 巩文秀, 郑建强, 等. 欧美翼身融合大型民机方案综述[J]. 民用飞机设计与研究, 2021(3): 123-134.
|
|
XIA M, GONG W X, ZHENG J Q, et al. A review of blended-wing-body for large civil aircraft of Europe and America[J]. Civil Aircraft Design & Research, 2021(3): 123-134 (in Chinese).
|
4 |
邢宇. 桁架支撑机翼布局客机总体设计的综合分析与优化[D]. 南京: 南京航空航天大学, 2018: 3-13.
|
|
XING Y. Integrated analysis and optimization in conceptual design of airliners with truss-braced wing configuration[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 3-13. (in Chinese).
|
5 |
QIN N, VAVALLE A, LE MOIGNE A, et al. Aerodynamic considerations of blended wing body aircraft[J]. Progress in Aerospace Sciences, 2004, 40(6): 321-343.
|
6 |
DEHPANAH P, NEJAT A. The aerodynamic design evaluation of a blended-wing-body configuration[J]. Aerospace Science and Technology, 2015, 43: 96-110.
|
7 |
柴啸, 陈迎春, 谭兆光, 等. 翼身融合布局客机总体参数分析与优化[J]. 航空学报, 2019, 40(9): 623042.
|
|
CHAI X, CHEN Y C, TAN Z G, et al. Analysis and optimization of overall parameters for blended-wing-body civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 623042 (in Chinese).
|
8 |
蒋瑾, 钟伯文, 符松. 翼身融合布局飞机总体参数对气动性能的影响[J]. 航空学报, 2016, 37(1): 278-289.
|
|
JIANG J, ZHONG B W, FU S. Influence of overall configuration parameters on aerodynamic characteristics of a blended-wing-body aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 278-289 (in Chinese).
|
9 |
潘立军, 吴大卫, 谭兆光, 等. 基于适航符合性的翼身融合布局客机客舱布置设计[J]. 航空学报, 2019, 40(9): 623044.
|
|
PAN L J, WU D W, TAN Z G, et al. Cabin layout design for BWB civil aircraft based on airworthiness compliance[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 623044 (in Chinese).
|
10 |
IATA. Aircraft technology net zero roadmap[EB/OL]. (2023-06-02)[2023-9-20]. .
|
11 |
REIST T A, ZINGG D W. Aerodynamic design of blended wing-body and lifting-fuselage aircraft[R]: AIAA-2016-3874. Reston: AIAA, 2016.
|
12 |
BRADLEY M K, DRONEY C K. Subsonic ultra green aircraft research phase I: Final report: NASA/CR-2011- 216847[R]. Washington, D.C.: NASA, 2011.
|
13 |
张新榃, 张帅, 王建礼, 等. 支撑翼布局客机总体参数对结构重量的影响[J]. 航空学报, 2019, 40(2): 522359.
|
|
ZHANG X T, ZHANG S, WANG J L, et al. Effect of primary parameters on structure weight of civil aircraft with strut-braced wing[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 522359 (in Chinese).
|
14 |
BRADLEY M, DRONEY C K. Subsonic ultra green aircraft research phase II: N+4 advanced concept development: NASA/CR-2012-217556[R]. Washington, D.C.: NASA, 2012.
|
15 |
CAVALLARO R, Challenges DEMASI L., ideas, and innovations of joined-wing configurations : A concept from the past, an opportunity for the future[J]. Progress in Aerospace Sciences, 2016, 87: 1-93.
|
16 |
DRONEY C K, HARRISON N, GATLIN G. Subsonic ultra-green aircraft research: Transonic truss-braced wing technical maturation[C]∥ Proceedings of the 31st Congress of the Internation-al Council of the Aeronautical Sciences. Bonn: ICAS, 2018: 9-14.
|
17 |
HARRISON N A, GATLIN G M, VIKEN S A, et al. Development of an efficient M=0.80 transonic truss-braced wing aircraft: AIAA-2020-0011[R]. Reston: AIAA, 2020.
|
18 |
XIONG J T, NGUYEN N T, BARTELS R E. Jig twist optimization of Mach 0.8 transonic truss-braced wing aircraft: AIAA-2023-1573[R]. Reston: AIAA, 2023.
|
19 |
STROHMEYER D, SEUBERT R, HEINZE W, et al. Three surface aircraft - A concept for future transport aircraft: AIAA-2000-0566[R]. Reston: AIAA, 2000.
|
20 |
NICOLOSI F, CORCIONE S, TRIFARI V, et al. Design and optimization of a large turboprop aircraft[J]. Aerospace, 2021, 8(5): 132.
|
21 |
CACCIOLA S, RIBOLDI C, ARNOLDI M. Three-surface model with redundant longitudinal control: Modeling, trim optimization and control in a preliminary design perspective[J]. Aerospace, 2021, 8(5): 139.
|
22 |
RIBOLDI C E D, CACCIOLA S, CEFFA L. Studying and optimizing the take-off performance of three-surface aircraft[J]. Aerospace, 2022, 9(3): 139.
|
23 |
SOLLO A. P.180 avanti: an iconic airplane and the achievement of an historical milestone[J]. Aerotecnica Missili & Spazio, 2021, 100(1): 69-78.
|
24 |
PIAGGIO AEROSPACE. Piaggio Aerospace Brochure Avanti Evo optimised[EB/OL]. (2018-02-28)[2023-09-20]. .
|
25 |
ALI J, SALEH M. Experimental and numerical study on the aerodynamics and stability characteristics of a canard aircraft[J]. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2020, 53(2): 165-174.
|
26 |
AGNEW J W, HESS J R Jr. Benefits of aerodynamic interaction to the three-surface configuration[J]. Journal of Aircraft, 1980, 17(11): 823-827.
|
27 |
FELDER J L. NASA electric propulsion system studies: GRC-E-DAA-TN28410[R]. Washington, D.C.: NASA, 2015.
|
28 |
王妙香. NASA亚声速大型飞机电推进技术研究综述[J]. 航空科学技术, 2019, 30(11): 22-29.
|
|
WANG M X. Overview of NASA electrified aircraft propulsion research for large subsonic transports[J]. Aeronautical Science & Technology, 2019, 30(11): 22-29 (in Chinese).
|
29 |
JANSEN R, BOWMAN C, JANKOVSKY A, et al. Overview of NASA electrified aircraft propulsion (EAP) research for large subsonic transports: AIAA-2017-4701[R]. Reston: AIAA, 2017.
|
30 |
WELSTEAD J, FELDER J L. Conceptual design of a single-aisle turboelectric commercial transport with fuselage boundary layer ingestion: AIAA-2016-1027[R]. Reston: AIAA, 2016.
|
31 |
STARKEY R, ARGROW B, KREVOR Z. Design and flight testing of a 15% dynamically scaled HL-20 vehicle model: AIAA-2012-1048[R]. Reston: AIAA, 2012.
|
32 |
何开锋, 毛仲君, 汪清, 等. 缩比模型演示验证飞行试验及关键技术[J]. 空气动力学学报, 2017, 35(5): 671-679, 670.
|
|
HE K F, MAO Z J, WANG Q, et al. Demonstration and validation flight test of scaled aircraft model and its key technologies[J]. Acta Aerodynamica Sinica, 2017, 35(5): 671-679, 670 (in Chinese).
|
33 |
CHAMBERS J R. Modeling flight: The role of dynamically scaled free-flight models in support of NASA’s aerospace programs[M]. Washington, D.C.: NASA, 2010: 1-16.
|
34 |
JENKINSON L R, RHODES D, SIMPKIN P. Civil jet aircraft design[M]. Reston: AIAA, 1999.
|
35 |
陈迎春, 宋文滨, 刘洪. 民用飞机总体设计[M]. 上海: 上海交通大学出版社, 2010: 29-195.
|
|
CHEN Y C, SONG W B, LIU H. Civil aircraft design[M]. Shanghai: Shanghai Jiao Tong University Press, 2010: 29-195 (in Chinese).
|
36 |
黄俊, 杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报, 2016, 37(1): 57-68.
|
|
HUANG J, YANG F T. Development and challenges of electric aircraft with new energies[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 57-68 (in Chinese).
|
37 |
LEVY D. Prediction of average downwash gradient for canard configurations: AIAA-1992-284[R]. Reston: AIAA, 1992.
|