航空学报 > 2024, Vol. 45 Issue (8): 129048-129048   doi: 10.7527/S1000-6893.2023.29048

高速对转涵道风扇双驱动电机的热特性

黄维康1, 张卓然1(), 达兴亚2, 袁培博2, 高华敏1   

  1. 1.南京航空航天大学 自动化学院,南京 210016
    2.中国空气动力研究与发展中心 高速空气动力研究所,绵阳 621000
  • 收稿日期:2023-05-26 修回日期:2023-06-12 接受日期:2023-07-17 出版日期:2024-04-25 发布日期:2023-07-28
  • 通讯作者: 张卓然 E-mail:apsc-zzr@nuaa.edu.cn
  • 基金资助:
    国家自然科学基金“叶企孙”联合基金重点项目(U2141223)

Thermal characteristics of dual drive motors for high speed counter⁃rotating ducted fan

Weikang HUANG1, Zhuoran ZHANG1(), Xingya DA2, Peibo YUAN2, Huamin GAO1   

  1. 1.College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    2.High Speed Aerodynamics Institute,China Aerodynamics Research and Development Center,Mianyang 621000,China
  • Received:2023-05-26 Revised:2023-06-12 Accepted:2023-07-17 Online:2024-04-25 Published:2023-07-28
  • Contact: Zhuoran ZHANG E-mail:apsc-zzr@nuaa.edu.cn
  • Supported by:
    “Ye Qisun” Joint Foundation Project supported by the State Key Program of National Natural Science Foundation of China(U2141223)

摘要:

提出一种适用于高速巡航的对转涵道风扇的双电机驱动架构,采用对转风扇-风扇-电机-电机 (FFMM)的布局设计。在该驱动架构中,前后级驱动电机根据气动需求具有不同的功率和尺寸。FFMM布局的双电机驱动架构整体安装在涵道中心体内,有利于提高对转涵道风扇的气动性能,然而同一腔体内的双电机间存在热耦合和绕组间空腔的积温现象,难以判断风扇运行过程的电机温升情况和基于对转风扇气流的冷却效果。分析了所提FFMM布局的双电机驱动架构在不同工况下的电机损耗分布特性;探究了电机间热耦合对前后电机温升的影响,并对电机间积温空腔热网络模型进行优化;为平衡中心体内前后电机的温度分布,减少中心体结构轴向长度,采用环状导热片结构调节双电机间的热耦合程度,有效提高电机间积温空腔的散热性能并优化前后电机的温升分布。基于高速对转涵道风扇搭建实验平台并完成电磁与温升实验。实验结果与仿真结果一致,表明直接风冷条件下FFMM布局高速对转涵道风扇有着较强的散热能力,并且环状导热片对FFMM布局的中心体内部温度的分布有着更好的冷却效果。

关键词: 航空电推进, 电推进飞机, 对转涵道风扇, 驱动电机, 热分析

Abstract:

This article proposes a dual-motor drive architecture for a counter-rotating ducted fan for high speed cruise, with the Fan-Fan-Motor-Motor (FFMM) layout design, where the counter-rotating fan is forward, and the drive motors behind the fans. The front and rear motors have different powers and sizes according to the aerodynamic requirements. The dual motor drive frame with the FFMM layout is installed in the center of the ducted fan, conducive to improving the aerodynamic performance of the counter-rotating fans. However, thermal coupling exists between the two motors in the same space and the accumulation of temperature in the space between the windings, making it difficult to judge the motor temperature rise during fan operation and the cooling effect based on the counter-rotating fan airflow. In this article, we first analyze the motor loss distribution characteristics of the dual motor drive architecture with the proposed FFMM layout under different operating conditions; then we explore the influence of thermal coupling between motors on the temperature rise of the front and rear motors, and optimize the thermal network model of the accumulated temperature cavity between the motors. To balance the temperature distribution of the front and rear motors in the center body and reduce the axial length of the centrosome structure, an annular heat conduction sheet structure for adjusting the thermal coupling degree between the two motors has been proposed, which can effectively improve the heat dissipation performance of the thermal cavity between the motors and optimize the temperature rise distribution of the front and rear motors. Finally, an experimental platform is built based on the high-speed counter rotating ducted fan, and electromagnetic and temperature rise experiments are completed. The experimental results are consistent with those of the simulation, indicating that the FFMM high-speed counter-rotating fan has a strong heat dissipation capacity under the direct air-cooling condition, and the annular heat conducting fins have a better cooling effect on the temperature distribution in the centrosome of the FFMM layout.

Key words: aviation electric propulsion, electric propulsion aircraft, counter-rotating ducted fan, equivalent thermal network method, thermal analysis

中图分类号: