1 |
NONWEILER T R F. Aerodynamic problems of manned space vehicles[J]. The Journal of the Royal Aeronautical Society, 1959, 63(585): 521-528.
|
2 |
JONES J G, MOORE K C, PIKE J, et al. A method for designing lifting configurations for high supersonic speeds, using axisymmetric flow fields[J]. Ingenieur-Archiv, 1968, 37(1): 56-72.
|
3 |
王晓燕. 基于三维前缘线的乘波体设计方法研究[D]. 长沙: 国防科技大学, 2018.
|
|
WANG X Y. Research on design method of waverider based on three-dimensional leading edge line[D].Changsha: National University of Defense Technology, 2018 (in Chinese).
|
4 |
段焰辉, 范召林, 吴文华. 定后掠角密切锥乘波体的生成和设计方法[J]. 航空学报, 2016, 37(10): 3023-3034.
|
|
DUAN Y H, FAN Z L, WU W H. Generation and design method of compact cone waverider with fixed sweep angle[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10): 3023-3034 (in Chinese).
|
5 |
HE X, RASMUSSEN M L. Computational analysis of off-design waveriders[J]. Journal of Aircraft, 1994, 31(2): 345-353.
|
6 |
THSTROHMEYER E, NICKEL H, RADESPIEL R. Aerodynamic off-design behavior of integrated waveriders from take-off up to hypersonic flight[C]∥International Aerospace Planes and Hypersonics Technologies. Reston: AIAA, 1995: 6091.
|
7 |
SHI Y J, TSAI B J, MILES J, et al. Cone-derived waverider flowfield simulation including turbulence and off-design conditions[C]∥12th Applied Aerodynamics Conference. Reston: AIAA, 1994: 1822.
|
8 |
STARKEY R P, LEWIS M J. Analytical off-design lift-to-drag-ratio analysis for hypersonic waveriders[J]. Journal of Spacecraft and Rockets, 2000, 37(5): 684-691.
|
9 |
LI S B, LUO S B, HUANG W, et al. Influence of the connection section on the aerodynamic performance of the tandem waverider in a wide-speed range[J]. Aerospace Science and Technology, 2013, 30(1): 50-65.
|
10 |
LI S B, HUANG W, WANG Z G, et al. Design and aerodynamic investigation of a parallel vehicle on a wide-speed range[J]. Science China Information Sciences, 2014, 57(12): 1-10.
|
11 |
LI S B, WANG Z G, HUANG W, et al. Design and investigation on variable Mach number waverider for a wide-speed range[J]. Aerospace Science and Technology, 2018, 76: 291-302.
|
12 |
王发民, 丁海河, 雷麦芳. 乘波布局飞行器宽速域气动特性与研究[J]. 中国科学(E辑: 技术科学), 2009, 39(11): 1828-1835.
|
|
WANG F M, DING H H, LEI M F. Aerodynamic characteristics and research of waverider aircraft in wide speed range[J]. Scientia Sinica (Technologica), 2009, 39(11): 1828-1835 (in Chinese).
|
13 |
RODI P. Geometrical relationships for osculating cones and osculating flowfield waveriders[C]∥Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011: AIAA2011-1188.
|
14 |
RODI P. Vortex lift waverider configurations[C]∥Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012: AIAA2012-1238.
|
15 |
刘传振, 刘强, 白鹏, 等. 涡波效应宽速域气动外形设计[J]. 航空学报, 2018, 39(7): 121824.
|
|
LIU C Z, LIU Q, BAI P, et al. Aerodynamic shape design of vortex wave effect in wide speed range[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 121824 (in Chinese).
|
16 |
刘传振, 白鹏, 陈冰雁, 等. 定平面形状乘波体及设计变量影响分析[J]. 宇航学报, 2017, 38(5): 451-458.
|
|
LIU C Z, BAI P, CHEN B Y, et al. Analysis of the influence of fixed plane shape waverider and design variables[J]. Journal of Astronautics, 2017, 38(5): 451-458 (in Chinese).
|
17 |
ZHAO Z T, HUANG W, YAN B B, et al. Design and high speed aerodynamic performance analysis of vortex lift waverider with a wide-speed range[J]. Acta Astronautica, 2018, 151: 848-863.
|
18 |
谢赞, 周灿灿, 赵振涛, 等. 宽速域飞行器发展及研究现状综述[J]. 空天技术, 2022(4): 28-39, 86.
|
|
XIE Z, ZHOU C C, ZHAO Z T, et al. Overview of development and research status of wide-speed aircraft[J]. Aerospace Technology, 2022(4): 28-39, 86 (in Chinese).
|
19 |
张阳, 韩忠华, 周正, 等. 面向高超声速飞行器的宽速域翼型优化设计[J]. 空气动力学学报, 2021, 39(6): 111-127.
|
|
ZHANG Y, HAN Z H, ZHOU Z, et al. Optimal design of airfoil for hypersonic vehicle in wide speed range[J]. Acta Aerodynamica Sinica, 2021, 39(6): 111-127 (in Chinese).
|
20 |
孙祥程, 韩忠华, 柳斐, 等. 高超声速飞行器宽速域翼型/机翼设计与分析[J]. 航空学报, 2018, 39(6): 121737.
|
|
SUN X C, HAN Z H, LIU F, et al. Design and analysis of airfoil/wing of hypersonic vehicle in wide speed range[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 121737 (in Chinese).
|
21 |
FENG C, CHEN S S, YUAN W, et al. A wide-speed-range aerodynamic configuration by adopting wave-riding-strake wing[J]. Acta Astronautica, 2023, 202: 442-452.
|
22 |
方孝健. 翼身融合造型方法研究与实现[D]. 武汉: 华中科技大学, 2015.
|
|
FANG X J. Research and implementation of wing-body fusion modeling method[D].Wuhan: Huazhong University of Science and Technology, 2015 (in Chinese).
|
23 |
刘衍旭, 陈树生, 冯聪, 等. 高超声速滑翔飞行器锐边化气动隐身一体化设计[J]. 航空学报, 2023, 44(16): 128093.
|
|
LIU Yanxu, CHEN Shusheng, FENG Cong, et al. Sharp edge integrated aerodynamic-stealth design for hypersonic glide vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(16): 128093 (in Chinese).
|
24 |
CHEN S S, CAI F J, XIANG X H, et al. A low-diffusion robust flux splitting scheme towards wide-ranging Mach number flows[J]. Chinese Journal of Aeronautics, 2021, 34(5): 628-641.
|
25 |
CHEN S S, LI J P, LI Z, et al. Anti-dissipation pressure correction under low Mach numbers for Godunov-type schemes[J]. Journal of Computational Physics, 2022, 456: 111027.
|