[1] 孙侠生. 绿色航空技术研究与进展[M]. 北京:航空工业出版社, 2020:2-3. SUN X S. Research and progress of green aviation technology[M]. Beijing:Aviation Industry Press, 2020:2-3(in Chinese). [2] CROUCH J. Boundary-layer transition prediction for laminar flow control:AIAA-2015-2472[R]. Reston:AIAA, 2015. [3] KOWALEWSKI T, LIGRANI P, DREIZLER A, et al. Temperature and heat flux[M]//TROPEA C, YARIN A L, FOSS J F. Handbook of Experimental Fluid Mechanics. Berlin, Heidelberg:Springer, 2007:487-561. [4] LE SANT Y, MARCHAND M, MILLAN P, et al. An overview of infrared thermography techniques used in large wind tunnels[J]. Aerospace Science and Technology, 2002, 6(5):355-366. [5] ASTARITA T, CARDONE G, CARLOMAGNO G M, et al. A survey on infrared thermography for convective heat transfer measurements[J]. Optics & Laser Technology, 2000, 32(7-8):593-610. [6] ASTARITA T, CARLOMAGNO G M. Applications[M]//Infrared Thermography for Thermo-Fluid-Dynamics. Berlin, Heidelberg:Springer, 2012:129-197. [7] LYNDE M N, CAMPBELL R L, RIVERS M B, et al. Preliminary results from an experimental assessment of a natural laminar flow design method:AIAA-2019-2298[R]. Reston:AIAA, 2019. [8] PERRAUD J, SCHRAUF G, ARCHAMBAUD I, et al. Transonic high Reynolds number transition experiments in the ETW cryogenic wind tunnel:AIAA-2010-1300[R]. Reston:AIAA, 2010. [9] ZHU W K, SHI M T, ZHU Y D, et al. Experimental study of hypersonic boundary layer transition on a permeable wall of a flared cone[J]. Physics of Fluids, 2020, 32(1):011701. [10] ZHU W K, CHEN X, ZHU Y D, et al. Nonlinear interactions in the hypersonic boundary layer on the permeable wall[J]. Physics of Fluids, 2020, 32(10):104110. [11] MARKEVICIU T, OLSSON N, FURFERI R, et al. Flexible mild heaters in structural conservation of paintings:State of the art and conceptual design of a new carbon nanotubes-based heater[J]. Journal of Applied Sciences, 2012, 12(3):211-220. [12] KLEIN C, HENNE U, SACHS W, et al. Combination of Temperature-Sensitive Paint (TSP) and Carbon Nanotubes (CNT) for transition detection:AIAA-2015-1558[R]. Reston:AIAA, 2015. [13] YORITA D, ASAI K, KLEIN C, et al. Transition detection on rotating propeller blades by means of temperature sensitive paint:AIAA-2012-1187[R]. Reston:AIAA, 2012. [14] EGAMI Y, FEY U, KLEIN C, et al. Development of new two-component temperature-sensitive paint (TSP) for cryogenic testing[J]. Measurement Science and Technology, 2012, 23(11):115301. [15] 王猛, 钟海, 衷洪杰, 等. 红外热像边界层转捩探测的飞行试验应用研究[J]. 空气动力学学报, 2019, 37(1):160-167. WANG M, ZHONG H, ZHONG H J, et al. Flight test applications of boundary layer transition detection method using IR technique[J]. Acta Aerodynamica Sinica, 2019, 37(1):160-167(in Chinese). [16] CRAWFORD B K, DUNCAN G T, WEST D E, et al. Laminar-turbulent boundary layer transition imaging using IR thermography[J]. Optics and Photonics Journal, 2013, 3(3):233-239. [17] SIMON B, FILIUS A, TROPEA C, et al. IR thermography for dynamic detection of laminar-turbulent transition[J]. Experiments in Fluids, 2016, 57(5):93. [18] CRAWFORD B K, DUNCAN JR G T, WEST D E, et al. Robust, automated processing of IR thermography for quantitative boundary-layer transition measurements[J]. Experiments in Fluids, 2015, 56(7):149. [19] LATIF J. Heat convection[M]. 2nd ed. Berlin, Heidelberg:Springer, 2009:301-305. [20] 王猛, 李玉军, 赵荣奂, 等. 基于电加热涂层的红外热像转捩探测技术[J]. 气动研究与实验, 2021, 33(1):46-52. WANG M, LI Y J, ZHAO R H, et al. The infrared thermography boundary transition detecting technique based on electric heating coating[J]. Aerodynamic Research & Experiment, 2021, 33(1):46-52(in Chinese). |