赵罡1, 李瑾岳2, 徐茂程1, 张鹏飞2
收稿日期:
2022-05-20
修回日期:
2022-06-08
发布日期:
2022-08-08
通讯作者:
张鹏飞,E-mail:ftd423@buaa.edu.cn
E-mail:ftd423@buaa.edu.cn
基金资助:
ZHAO Gang1, LI Jinyue2, XU Maocheng1, ZHANG Pengfei2
Received:
2022-05-20
Revised:
2022-06-08
Published:
2022-08-08
Supported by:
摘要: 航空发动机是典型的高复杂度、高精密性、高集成度机械系统,其高性能、高安全性、高寿命需求以及日益增长的批量化生产需求对生产质量和效率提出了很高要求。随着零部件加工精度和质量稳定性的提升,装配环节逐渐成为控制产品质量的关键环节,装配精度、装配质量一致性和装配效率成为制约产品质量和批量化生产的重要因素。航空发动机装配技术是解决上述问题的核心技术,相关研究得到国内外科研机构及相关企业越来越多的关注。在总结航空发动机典型装配工艺与技术体系的基础上,详细论述了航空发动机装配机理、数字化装配技术、自动化装配工艺装备、先进测试技术等主要研究方向及现有技术不足,并对未来航空发动机装配精密化、数字化、智能化的发展趋势进行了阐述。
中图分类号:
赵罡, 李瑾岳, 徐茂程, 张鹏飞. 航空发动机关键装配技术综述与展望[J]. 航空学报, 2022, 43(10): 527484-527484.
ZHAO Gang, LI Jinyue, XU Maocheng, ZHANG Pengfei. Research status and prospect of key aero-engine assembly technology[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527484-527484.
[1] 张渝,李琳,陈津,等. 航空发动机重要装配工艺分析及研发展望[J]. 航空制造技术, 2019, 62(15):14-21. ZHANG Y, LI L, CHEN J, et al. Research current status and prospect on aero-engine assembly process technology[J]. Aeronautical Manufacturing Technology, 2019, 62(15):14-21(in Chinese). [2] 劉志軍,劉智武,吴曉鋒,等. 航空发动机数字化装配仿真关键技术研究[J]. 航空动力, 2021(2):74-76. LIU Z J, LIU Z W, WU X F, et al. Research on key simulation technology of aero engine digital assembly[J]. Aerospace Power, 2021(2):74-76(in Chinese). [3] 郭德伦,韩野,张媛. 航空发动机的发展对制造技术的需求[J]. 航空制造技术, 2015(22):68-72. GUO D L, HAN Y, ZHANG Y. Demand of aeroengine development for manufacturing technology[J]. Aviation Manufacturing Technology, 2015(22):68-72(in Chinese). [4] 孙贵青, 王彤, 吕玉红. 涡扇发动机先进装配工艺与装备[J]. 航空制造技术, 2017, 60(22):72-77. SUN G Q, WANG T, LV Y H. Advanced process and equipment for turbofan engine assembling[J]. Aeronautical Manufacturing Technology, 2017, 60(22):72-77(in Chinese). [5] 王晶, 石宏, 黄笑飞, 等. 基于蒙特卡罗模拟法的航空发动机装配公差分析[J]. 沈阳航空工业学院学报, 2010, 27(4):8-11. WANG J, SHI H, HUANG X F, et al. Assembly tolerance analysis of aircraft engine based on Monte Carlo simulation method[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2010, 27(4):8-11(in Chinese). [6] 王晶. 面向航空发动机数字化装配的公差分析技术研究[D]. 沈阳:沈阳航空航天大学, 2011:84. WANG J. The study of tolerance analysis technology for aeroengine digital assembly[D]. Shenyang:Shenyang Aerospace University, 2011:84(in Chinese). [7] 陈志英, 刘勇, 周平, 等. 基于改进Taguchi方法的航空发动机装配成功率计算方法[J]. 推进技术, 2018, 39(3):653-659. CHEN Z Y, LIU Y, ZHOU P, et al. Assembly success rate calculation method for aero-engine based on improved Taguchi method[J]. Journal of Propulsion Technology, 2018, 39(3):653-659(in Chinese). [8] LI M H, WANG Y L, SUN Q C, et al. Assembly accuracy prediction and optimization of aero-engine rotor under the separation condition of assembly and measurement[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(5):3103-3112. [9] 刘明, 常海涛, 段燕, 等. DCC在航空发动机工艺尺寸链计算中的应用[J]. 航空发动机, 2020, 46(4):98-102. LIU M, CHANG H T, DUAN Y, et al. Application of DCC in process dimension chain calculation of aeroengine[J]. Aeroengine, 2020, 46(4):98-102(in Chinese). [10] 单福平, 李志敏, 朱彬. 航空发动机典型转子件装配偏差建模及分析[J]. 制造业自动化, 2015, 37(7):100-103. SHAN F P, LI Z M, ZHU B. Modeling and analysis of assembling deviation of typical aeroengine rotor parts[J]. Manufacturing Automation, 2015, 37(7):100-103(in Chinese). [11] DING S Y, ZHENG X H, BAO J S, et al. A comprehensive study of three dimensional deviation analysis methods for aero-engine rotors assembly[J]. IOP Conference Series:Materials Science and Engineering, 2019, 688(3):1-7. [12] 沙辉, 谭克银. 航空发动机重要部件装配精度的分析[J]. 机械制造, 2017, 55(10):82-84. SHA H, TAN K Y. Analysis on assembly accuracy of key aeroengine parts[J]. Machinery, 2017, 55(10):82-84(in Chinese). [13] 李敏. 航空发动机公差分析及分配方法研究[J]. 机电信息, 2018(18):127-129. LI M. Research on tolerance analysis and allocation method of aero-engine[J]. Mechanical and Electrical Information, 2018(18):127-129(in Chinese). [14] 王振宇,张兢,张璋. 基于VSA的航空发动机装配公差分析[C]//中国航天第三专业信息网第四十届技术交流会暨第四届空天动力联合会议. 2019:6. WANG Z Y, ZHANG J, ZHANG Z. VSA-based aero-engine assembly tolerance analysis[C]//The 40th APTIS Technical Conference and 4th JCAP. 2019:6(in Chinese). [15] DING S Y, JIN S, LI Z M, et al. Multistage rotational optimization using unified Jacobian-Torsor model in aero-engine assembly[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2019, 233(1):251-266. [16] DING S Y, ZHENG X H, BAO J S, et al. An improved Jacobian-Torsor model for statistical variation solution in aero-engine rotors assembly[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2021, 235(3):466-483. [17] DING S Y, HE Y H, ZHENG X H. A probabilistic approach for three-dimensional variation analysis in aero-engine rotors assembly[J]. International Journal of Aeronautical and Space Sciences, 2021, 22(5):1092-1105. [18] WANG L, SUN C Z, TAN J B, et al. Improvement of location and orientation tolerances propagation control in cylindrical components assembly using stack-build assembly technique[J]. Assembly Automation, 2015, 35(4):358-366. [19] ZHANG M W, LIU Y M, SUN C Z, et al. Measurements error propagation and its sensitivity analysis in the aero-engine multistage rotor assembling process[J]. Review of Scientific Instruments, 2019, 90(11):115003. [20] HUSSAIN T, MEMON Z A. Minimizing assembly errors by selecting optimum assembly sequence in the assembly of a rigid circular structure[J]. Mehran University Research Journal of Engineering and Technology, 2012, 31(4):743-754. [21] MU X K, WANG Y L, YUAN B, et al. A New assembly precision prediction method of aeroengine high-pressure rotor system considering manufacturing error and deformation of parts[J]. Journal of Manufacturing Systems, 2021, 61:112-124. [22] 陈凯,唐湘林,叶飞,等. 航空发动机转子装配工艺仿真与预测研究[J]. 风机技术, 2021, 63(1):72-78. CHEN K, TANG X L, YE F, et al. Research on aero-engine rotor assembly process simulation and prediction[J]. Chinese Journal of Turbomachinery, 2021, 63(1):72-78(in Chinese). [23] 李小冬. 航空发动机转子止口-螺栓装配工艺研究[D]. 大连:大连理工大学, 2020:89. LI X D. Research on assembly process of aeroengine rotor rabbet-bolt joint structure[D]. Dalian:Dalian University of Technology, 2020:89(in Chinese). [24] 陈爽. 螺栓-止口连接的安装边制造误差对装配性能的影响研究[D]. 大连:大连理工大学, 2021:78. CHEN S. Research on the influence of manufacturing error of mounting edge of bolt-stop connection on the assembly performance[D]. Dalian:Dalian University of Technology, 2021:78. (in Chinese). [25] SUN W, LI T, YANG D J, et al. Dynamic investigation of aeroengine high pressure rotor system considering assembly characteristics of bolted joints[J]. Engineering Failure Analysis, 2020, 112:104510. [26] 李泽林. 基于轴向预载的转子装配方法研究[D]. 哈尔滨:哈尔滨工业大学, 2018:86. LI Z L. Research on rotor assembly method based on axial preload[D]. Harbin:Harbin Institute of Technology, 2018:86(in Chinese). [27] 汪祥, 王友涛, 唐彬, 等. 力矩-转角拧紧工艺在改进发动机机匣装配质量的应用研究[J]. 装备制造技术, 2021(3):116-118, 142. WANG X, WANG Y T, TANG B, et al. Improvement of torque angle tightening process the application research of the assembly quality of engine gearbox[J]. Equipment Manufacturing Technology, 2021(3):116-118, 142(in Chinese). [28] 赵兵, 张守阳, 王辉, 等. 九级盘装配连接螺栓预紧力评估与分析[J]. 中国机械工程, 2020, 31(13):1570-1576. ZHAO B, ZHANG S Y, WANG H, et al. Evaluation and analysis on bolt pre-tightening forces of nine-stage disc assembly[J]. China Mechanical Engineering, 2020, 31(13):1570-1576(in Chinese). [29] 柏树生, 翟学, 艾延廷, 等. 螺栓连接对发动机机匣装配同心度及动力特性的影响[J]. 航空科学技术, 2010, 21(6):35-37. BAI S S, ZHAI X, AI Y T, et al. The influence of bolted connection on the coaxial tolerance and dynamic analysis in aero-engine casing[J]. Aeronautical Science and Technology, 2010, 21(6):35-37(in Chinese). [30] SCHLEICH B, ANWER N, MATHIEU L, et al. Skin model shapes:a new paradigm shift for geometric variations modelling in mechanical engineering[J]. Computer-Aided Design, 2014, 50:1-15. [31] ZHAO G, LI J Y, ZHANG B, et al. An aero-engine assembly deviation analysis method based on skin model shapes[M]. 2022:78-89. [32] SUN Q C, ZHAO B B, LIU X, et al. Assembling deviation estimation based on the real mating status of assembly[J]. Computer-Aided Design, 2019, 115:244-255. [33] LIU J H, ZHANG Z Q, DING X Y, et al. Integrating form errors and local surface deformations into tolerance analysis based on skin model shapes and a boundary element method[J]. Computer-Aided Design, 2018, 104:45-59. [34] ZHANG M W, LIU Y M, SUN C Z, et al. Precision measurement and evaluation of flatness error for the aero-engine rotor connection surface based on convex hull theory and an improved PSO algorithm[J]. Measurement Science and Technology, 2020, 31(8):85006. [35] AI Y T, ZHANG F L. Application of principal component analysis in relational research between aeroengine assembly parameters and its vibration[C]//2008 Fourth International Conference on Natural Computation, 2008:95-99. [36] KANG H H, LI Z M, LIU T, et al. A novel method to design tolerance of aero-engine casing by integrating 3-D assembly tolerance with performance instability[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2022, 236(8):1052-1070. [37] SYKES J, HOLRNES R. The effects of bearing misalignment on the non-linear vibration of aero-engine rotor-damper assemblies[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 1990, 204(2):83-99. [38] CHI X, DI MAIO D, LIEVEN N A. Dynamic response and energy loss in jointed structures using finite element methods application to an aero-engine casing assembly[C]//28th International Conference on Noise and Vibration Engineering, ISMA2018 in Conjunction with the 7th International Conference on Uncertainty in Structural Dynamics, 2018:1835-1849. [39] DI MAIO D, RAMAKRISHNAN G, RAJASAGARAN Y. Experimental model validation of an aero-engine casing assembly[M]. 2017:339-347. [40] HUANG Z, ZANG C P, JIANG Y Y, et al. Dynamic finite element model validation of an assembled aero-engine casing[J]. Journal of Physics. Conference Series, 2016, 744(1):12139. [41] MIR-HAIDARI S E, BEHDINAN K. Nonlinear effects of bolted flange connections in aeroengine casing assemblies[J]. Mechanical Systems and Signal Processing, 2022, 166:108433. [42] 邱海, 张海军, 屈梁生, 等. 遗传算法在柔性转子动平衡中的应用[J]. 中国机械工程, 2002, 13(5):413-416. QIU H, ZHANG H J, QU L S, et al. The application of genetic algorithm in flexible rotor dynamic balancing[J]. China Mechanical Engineering, 2002, 13(5):413-416(in Chinese). [43] CHEN Y, CUI J W, SUN X. An unbalance optimization method for a multi-stage rotor based on an assembly error propagation model[J]. Applied Sciences, 2021, 11(2):887. [44] CHEN Y, CUI J W, SUN X. A vibration suppression method for the multistage rotor of an aero-engine based on assembly optimization[J]. Machines, 2021, 9(9):189. [45] SUN C Z, WANG L, TAN J B, et al. Improvement of variation propagation control in mechanical assembly using adjustment assembly technique[J]. Applied Mechanics & Materials, 2017, 870:459-464. [46] YANG Z, HUSSIAN T, POPOV A A, et al. A comparison of different optimization techniques for variation propagation control in mechanical assembly[J]. IOP Conference Series:Materials Science and Engineering, 2011, 26:12017. [47] 孟祥海, 单福平. 航空发动机转子件装配质量预测[J]. 制造业自动化, 2016, 38(5):61-65. MENG X H, SHAN F P. Prediction of assembly quality of aeroengine rotor parts[J]. Manufacturing Automation, 2016, 38(5):61-65(in Chinese). [48] DING S Y, ZHENG X H, BAO J S, et al. Robust design of aero-engine assembly using taguchi method based on Jacobian-torsor model[C]//ASME 2019 International Mechanical Engineering Congress and Exposition, 2020. [49] SUN C Z, LI C T, LIU Y M, et al. Prediction method of concentricity and perpendicularity of aero engine multistage rotors based on PSO-BP neural network[J]. IEEE Access, 2019, 7:132271-132278. [50] ZHANG Z H, GUO J K, SUN Y H, et al. Eccentricity of rotor prediction of aero-engine rotor based on image identification and machine learning[C]//ASME 2019 International Mechanical Engineering Congress and Exposition, 2020 [51] YANG Z, MCWILLIAM S, POPOV A A, et al. A probabilistic approach to variation propagation control for straight build in mechanical assembly[J]. The International Journal of Advanced Manufacturing Technology, 2013, 64(5-8):1029-1047. [52] YANG Z, HUSSAIN T, POPOV A A, et al. Novel optimization technique for variation propagation control in an aero-engine assembly[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2011, 225(1):100-111. [53] SUN Y H, GUO J K, HONG J, et al. Repair decision based on sensitivity analysis for aero-engine assembly[J]. International Journal of Precision Engineering and Manufacturing, 2019, 20(3):347-362. [54] 杜海雷,孙惠斌,黄健,等. 面向装配精度的航空发动机转子零件选配优化[J]. 计算机集成制造系统, 2021, 27(5):1292-1299. DU H L, SUN H B, HUANG J, et al. Optimizing aero-engine rotor part matching considering assembly accuracy[J]. Computer Integrated Manufacturing Systems, 2021, 27(5):1292-1299(in Chinese). [55] 解梦涛, 文敏, 陶冶, 等. 基于遗传算法的航空发动机转子动平衡优化计算[J]. 现代机械, 2017(3):19-22. XIE M T, WEN M, TAO Y, et al. The optimization of dynamic balance of aircraft engine rotor based on genetic algorithm[J]. Modern Machinery, 2017(3):19-22(in Chinese). [56] LIU Y M, ZHANG M W, SUN C Z, et al. A method to minimize stage-by-stage initial unbalance in the aero engine assembly of multistage rotors[J]. Aerospace Science and Technology, 2019, 85:270-276. [57] LI K L, CHEN K, GAO J M, et al. Research on optimizing-assembly and optimizing-adjustment technologies of aero-engine fan rotor blades[J]. Advanced Engineering Informatics, 2022, 51:101506. [58] 冯硕, 孙汕民, 朱林波, 等. 某航空发动机高压转子连接装配仿真分析[J]. 航空制造技术, 2020, 63(16):86-94. FENG S, SUN S M, ZHU L B, et al. Simulation analysis on high-pressure rotor connection assembly of one aero-engine[J]. Aeronautical Manufacturing Technology, 2020, 63(16):86-94(in Chinese). [59] SUN C Z, LIU Z W, LIU Y M, et al. An adjustment method of geometry and mass centers for precision rotors assembly[J]. IEEE Access, 2019, 7:169992-170002. [60] SUN C Z, XIAO P H, WANG X M, et al. Blade sorting method for unbalance minimization of an aeroengine concentric rotor[J]. Symmetry, 2021, 13(5):832. [61] CHEN Y, CUI J W, SUN X, et al. Research on multistage rotor assembly optimization methods for aeroengine based on the genetic algorithm[J]. Complexity, 2021, 2021:8847690. [62] CHEN Y, CUI J W, SUN X. An assembly method for the multistage rotor of an aero-engine based on the dual objective synchronous optimization for the coaxality and unbalance[J]. Aerospace, 2021, 8(4):94. [63] 刘君, 吴法勇, 王娟. 航空发动机转子装配优化技术[J]. 航空发动机, 2014, 40(3):75-78. LIU J, WU F Y, WANG J. Optimization technique of aeroengine rotor assembly[J]. Aeroengine, 2014, 40(3):75-78(in Chinese). [64] 琚奕鹏, 吴法勇, 金彬, 等. 基于转子跳动和初始不平衡量优化的多级盘转子结构装配工艺[J]. 航空发动机, 2018, 44(6):83-90. JU Y P, WU F Y, JIN B, et al. Structure assembly technique of multi-stage disc rotor based on rotor runout and unbalance optimization[J]. Aeroengine, 2018, 44(6):83-90(in Chinese). [65] 刘洪慧,刘亮,李明华,等. 多级盘转子装配不平衡量预测与优化[J]. 机械科学与技术, 2021:1-8. LIU H H, LIU L, LI M H, et al. Multi-stage disc rotor assembly unevenness prediction and optimization[J]. Mechanical Science and Technology, 2021:1-8(in Chinese) (in press). [66] 孙贵青, 赵哲, 季益铃, 等. 航空发动机结构设计中可装配性案例分析[J]. 航空发动机, 2018, 44(4):86-90. SUN G Q, ZHAO Z, JI Y L, et al. Instance analysis of aeroengine structure design of assembly[J]. Aeroengine, 2018, 44(4):86-90(in Chinese). [67] RENDLE J, STAUDACHER S. Assessment of aero engine assemblability during preliminary design[J]. Procedia CIRP, 2016, 57:473-478. [68] MALL J, STAUDACHER S. Evaluation of assemblability during aero engine preliminary design[J]. CEAS Aeronautical Journal, 2018, 9(1):147-156. [69] MALL J, STAUDACHER S, KOCH C. The assessment of assemblability and dissassemblability of aero engines during preliminary design[C]//Proceedings of ASME Turbo Expo 2018:Turbomachinery Technical Conference and Exposition, 2018. [70] 滕伟斌, 王修专, 储松林, 等. 虚拟装配技术在航空发动机燃油附件设计验证中的应用[J]. 现代制造技术与装备, 2018(12):14-16, 19. TENG W B, WANG X Z, CHU S L, et al. Application of virtual assembly technology in design verification of aero engine fuel accessory[J]. Modern Manufacturing Technology and Equipment, 2018(12):14-16, 19(in Chinese). [71] BAI G C, FEI C W. Distributed collaborative response surface method for mechanical dynamic assembly reliability design[J]. Chinese Journal of Mechanical Engineering, 2013, 26(6):1160-1168. [72] 陈志英, 谷裕, 周平, 等. 航空发动机套齿动态装配间隙非概率优化设计[J]. 航空发动机, 2017, 43(3):1-4. CHEN Z Y, GU Y, ZHOU P, et al. Non-probabilistic optimization design of dynamic assembly gap for aeroengine spline[J]. Aeroengine, 2017, 43(3):1-4(in Chinese). [73] 赵罡, 王超, 于红亮. 基于神经网络和遗传算法的公差优化设计[J]. 北京航空航天大学学报, 2010, 36(5):518-523. ZHAO G, WANG C, YU H L. Tolerance optimization based on neural network and genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(5):518-523(in Chinese). [74] ZHOU C, YIN Y H. Pipe assembly planning algorithm by imitating human imaginal thinking[J]. Assembly Automation, 2010, 30(1):66-74. [75] 赵哲, 孙贵青, 王彤. 发动机低涡轴碰磨故障的装配工艺分析[J]. 现代制造技术与装备, 2018(1):113-114, 117. ZHAO Z, SUN G Q, WANG T. Assembly analysis of collision failure on low pressure turbine shaft of engine[J]. Modern Manufacturing Technology and Equipment, 2018(1):113-114, 117(in Chinese). [76] 李冠华, 闫雪, 叶代勇, 等. 商用航空发动机数字化装配工艺设计系统[J]. 航空发动机, 2020, 46(6):98-102. LI G H, YAN X, YE D Y, et al. Design system of digital assembly process for commercial aeroengine[J]. Aeroengine, 2020, 46(6):98-102(in Chinese). [77] ZHANG W L, WANG C E, YU J P. A design for assembly system for aero engine[C]//2009 International Conference on Computer and Automation Engineering, 2009:328-331. [78] 于向财, 蒋春峰, 谭巍. 基于数字化技术的航空发动机装配分析[J]. 内燃机与配件, 2016(7):36-39. YU X C, JIANG C F, TAN W. Aeroengine assembly analysis based on digital technology[J]. Internal Combustion Engine & Parts, 2016(7):36-39(in Chinese). [79] 郭宝林. 浅谈基于数字化技术的航空发动机装配[J]. 内燃机与配件, 2019(18):36-37. GUO B L. Discussion on aero-engine assembly based on digital technology[J]. Internal Combustion Engine & Parts, 2019(18):36-37(in Chinese). [80] 郝斌, 张振兴. 航空发动机数字化装配技术探讨[J]. 设备管理与维修, 2019(14):222-223. HAO B, ZHANG Z X. Discussion on digital assembly technology of aeroengine[J]. Plant Maintenance Engineering, 2019(14):222-223(in Chinese). [81] 孙汕民, 周烁, 高鸽, 等. 航空发动机装配仿真的关键技术问题[J]. 航空制造技术, 2018, 61(22):98-103. SUN S M, ZHOU S, GAO G, et al. Key technical issues on aero-engine assembly simulation[J]. Aeronautical Manufacturing Technology, 2018, 61(22):98-103(in Chinese). [82] 龙洋, 王彤, 孙贵青, 等. 航空发动机装配IETM开发技术研究[J]. 科技视界, 2017(1):4-6. LONG Y, WANG T, SUN G Q, et al. Research on developing technology of assembly IETM for aero-engine[J]. Science & Technology Vision, 2017(1):4-6(in Chinese). [83] GOGINENI S, EXNER K, STARK R, et al. Semantic assistance system for providing smart services and reasoning in aero-engine manufacturing[M]//Metadata and Semantic Research. 2019:90-102. [84] 李坤, 莫蓉. 航空发动机装配数据结构化建模及应用[J]. 航空制造技术, 2014, 57(8):58-61, 89. LI K, MO R. Structured modeling of aeroengine assembly data and its application[J]. Aeronautical Manufacturing Technology, 2014, 57(8):58-61, 89(in Chinese). [85] 孙惠斌, 常智勇. 航空发动机装配技术状态数据模型研究[J]. 航空制造技术, 2009, 52(16):74-78. SUN H B, CHANG Z Y. Study on configuration data model of aeroengine assembly[J]. Aeronautical Manufacturing Technology, 2009, 52(16):74-78(in Chinese). [86] 王成恩, 于宏, 张闻雷, 等. 面向对象的航空发动机装配模型[J]. 计算机集成制造系统, 2010, 16(5):942-948. WANG C G, YU H, ZHANG W L, et al. Object-oriented aero-engine assembly models[J]. Computer Integrated Manufacturing Systems, 2010, 16(5):942-948(in Chinese). [87] WANG C G, YU H, ZHANG W L. Object-oriented models for aero-engine assembly[J]. International Journal of Internet Manufacturing and Services, 2010, 2(3/4):354-364. [88] 李联辉, 尹冠飞, 莫蓉. 面向航空发动机装配过程的信息追溯与过程监控[J]. 计算机集成制造系统, 2018, 24(12):2986-3000. LI L H, YIN G F, MO R. Information tracking and process monitoring for aero-engine assembly[J]. Computer Integrated Manufacturing Systems, 2018, 24(12):2986-3000(in Chinese). [89] 金国富. 航空发动机装配工艺与资源管理系统[D]. 沈阳:东北大学, 2009:75. JIN G F. Aero-engine assembly process & resource management system[D]. Shenyang:Northeastern University, 2009:75(in Chinese). [90] CHEN Z Y, BAO J S, ZHENG X H, et al. Assembly information model based on knowledge graph[J]. Journal of Shanghai Jiaotong University (Science), 2020, 25(5):578-588. [91] ZHOU B, BAO J S, CHEN Z Y, et al. KGAssembly:Knowledge graph-driven assembly process generation and evaluation for complex components[J]. International Journal of Computer Integrated Manufacturing, 2021, 71:102160. [92] 连宇臣, 徐尧, 李琳, 等. 航空发动机脉动式装配生产线工艺仿真关键技术研究[J]. 航空制造技术, 2020, 63(S1):57-63. LIAN Y C, XU Y, LI L, et al. Research on key technology of process simulation for aero-engine pulsation assembly production line[J]. Aeronautical Manufacturing Technology, 2020, 63(S1):57-63(in Chinese). [93] 黄江, 杨海, 史小强, 等. 面向智能制造的航空发动机数字化总装生产线建设研究[J]. 航空制造技术, 2020, 63(6):34-42. HUANG J, YANG H, SHI X Q, et al. Research on construction of aero-engine digital final assembly line oriented to intelligent manufacturing[J]. Aeronautical Manufacturing Technology, 2020, 63(6):34-42(in Chinese). [94] 马啸, 汪祥, 李宇昊. 基于航空发动机的总装脉动生产线技术[J]. 电子机械工程, 2020, 36(2):60-64. MA X, WANG X, LI Y H. Technology of final assembly pulse production line based on aero engine[J]. Electro-Mechanical Engineering, 2020, 36(2):60-64(in Chinese). [95] 汤新民, 钟诗胜. 基于离散时间最优控制的航空发动机装配序列规划[J]. 控制与决策, 2008, 23(11):1221-1225, 1230. TANG X M, ZHONG S S. Aero-engine assembly sequence planning based on discrete-time pontryagin's minimum principle[J]. Control and Decision, 2008, 23(11):1221-1225, 1230(in Chinese). [96] 孙茉莉, 常智勇, 莫蓉. 航空发动机装配数字化关键技术研究[J]. 中国机械工程, 2008, 19(2):200-203. SUN M L, CHANG Z Y, MO R. Research on key technologies of aero-engine assembly digital system[J]. China Mechanical Engineering, 2008, 19(2):200-203(in Chinese). [97] 钟诗胜, 汤新民, 池善纯. 基于着色Petri网的航空发动机总装作业调度研究[J]. 航空精密制造技术, 2006, 42(6):52-55, 51. ZHONG S S, TANG X M, CHI S C. Conflict of shared resource oriented modelling and scheduling of aero-engine assembly using petri nets[J]. Aviation Precision Manufacturing Technology, 2006, 42(6):52-55, 51(in Chinese). [98] BRVNNHÄUBER J, GOGINENI S, NICKEL J, et al. Assembly issue resolution system using machine learning in aero engine manufacturing[M]//IFIP Advances in Information and Communication Technology, 2020:149-157. [99] 李联辉, 莫蓉, 常智勇, 等. 基于平衡权重和改进TOPSIS的航空发动机装配任务优先度评价方法[J]. 计算机集成制造系统, 2015, 21(5):1193-1201. LI L H, MO R, CHANG Z Y, et al. Priority evaluation method for aero-engine assembly task based on balanced weight and improved TOPSIS[J]. Computer Integrated Manufacturing Systems, 2015, 21(5):1193-1201(in Chinese). [100] 吕玉红, 吴法勇, 王彤, 等. 数字化装配工艺与装配过程管理协同设计[J]. 航空制造技术, 2015, 58(21):62-64, 72. LV Y H, WU F Y, WANG T, et al. Collaborative design of digital assembly process planning and real assembly process management[J]. Aeronautical Manufacturing Technology, 2015, 58(21):62-64, 72(in Chinese). [101] WANG S W, YANG H C, RONG M. Research and design of assembly manufacturing execution system for aero-engine[C]//International Conference on Digital Manufacturing & Automation (ICDMA 2011), 2011:911-915. [102] 许连芳, 韩福金, 吴法勇, 等. 航空发动机装配MES系统设计[J]. 航空制造技术, 2017, 60(3):62-66. XU L F, HAN F J, WU F Y, et al. Aeroengine assembly MES system design[J]. Aeronautical Manufacturing Technology, 2017, 60(3):62-66(in Chinese). [103] LI L H, MO R, SUN H B, et al. Petri nets-based implement process model for engineering change on aero-engine assembly field[J]. Applied Mechanics and Materials, 2011, 148-149:1118-1121. [104] 曾亮. 航空发动机装配数字化系统研究[D]. 西安:西北工业大学, 2007:83. ZENG L. Research on aeroengine assembly digitalization system[D]. Xi'an:Northwestern Polytechnical University, 2007:83(in Chinese). [105] SUN H B, CHANG Z Y, WAN N, et al. Study on key technologies of aero-engine AMRO support system[J]. Materials Science Forum, 2011, 697-698:554-559. [106] LIU C, LIU Z D, ZHAO H F, et al. Research on application of engine assembly process design based on assembly simulation technology[C]//20183rd International Conference on Computational Modeling, Simulation and Applied Mathematics, 2018:19-27. [107] 王秋阳, 李敏. 装配仿真技术在某型航空发动机中的应用[J]. 机电信息, 2018(18):113-115. WANG Q Y, LI M. Application of assembly technology in an aero-engine[J]. Mechanical and Electrical Information, 2018(18):113-115(in Chinese). [108] 唐嘉鸿, 谭青春. 商用航空发动机工装设计方法优化与仿真[J]. 机械制造, 2021, 59(8):57-61. TANG J H, TAN Q C. Optimization and simulation of tooling design method for commercial aviation engine[J]. Machinery, 2021, 59(8):57-61(in Chinese). [109] 徐延锋, 常智勇, 石源, 等. 基于VRML-OpenGL的装配可视化及其原型系统研究[J]. 中国制造业信息化, 2006, 35(1):53-56, 61. XU Y F, CHANG Z Y, SHI Y, et al. The assembly visualization prototyping system based on VRML-OpenGL[J]. Manufacture Information Engineering of China, 2006, 35(1):53-56, 61(in Chinese). [110] 苟园捷, 常智勇, 莫蓉, 等. 航空发动机装配仿真关键技术研究[J]. 制造业自动化, 2008, 30(1):1-5, 34. GOU Y J, CHANG Z Y, MO R, et al. The key technology research of process stimulation to aero-engine assembly[J]. Manufacturing Automation, 2008, 30(1):1-5, 34(in Chinese). [111] 苟园捷, 常智勇, 莫蓉, 等. 航空发动机装配过程仿真技术研究[J]. 现代制造工程, 2007(12):57-61. GOU Y J, CHANG Z Y, MO R, et al. The technology research of process simulation to aero-engine assembly[J]. Modern Manufacturing Engineering, 2007(12):57-61(in Chinese). [112] 衣陈晨. 基于DELMIA的航空发动机转子的虚拟装配[D]. 西安:西安工业大学, 2016:61. YI C C. Virtual assembly of aero-engine rotor based on DELMIA[D]. Xi'an:Xi'an Technological University, 2016:61(in Chinese). [113] 周烁, 陈静荣, 汪俊熙, 等. 某型航空发动机装配过程虚拟仿真应用[J]. 机械设计与制造工程, 2016, 45(2):55-59. ZHOU S, CHEN J R, WANG J X, et al. The virtual simulation application to one aero-engine assembly process[J]. Machine Design and Manufacturing Engineering, 2016, 45(2):55-59(in Chinese). [114] 曹率, 孙惠斌, 杨海成. 基于RFID的航空发动机交互式装配操作引导方法研究[J]. 航空制造技术, 2013, 56(12):85-88, 94. CAO S, SUN H B, YANG H C. Research on interactive assembly Guiding method of aeroengine based on RFID[J]. Aeronautical Manufacturing Technology, 2013, 56(12):85-88, 94(in Chinese). [115] 朱涛, 莫蓉, 常智勇, 等. 航空发动机装配工艺执行系统关键技术研究[J]. 制造业自动化, 2009, 31(3):24-28. ZHU T, MO R, CHANG Z Y, et al. Research on key technologies of aero-engine assembly process execution system[J]. Manufacturing Automation, 2009, 31(3):24-28(in Chinese). [116] 鞠皎荧. 航空发动机部件虚拟装配及数字化检测技术[J]. 航空制造技术, 2014, 57(21):86-88, 92. JU J Y. Virtual assembly and digital testing technology of aeroengine part[J]. Aeronautical Manufacturing Technology, 2014, 57(21):86-88, 92(in Chinese). [117] WANG N, QI Y. Virtual assembly, maintenance and training system based on the virtual-real fusion technology[C]//2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, 2013:1949-1952. [118] 张青, 徐宇杰, 郭庆, 等. 体感交互技术在航空发动机虚拟装配实验中的应用[J]. 实验技术与管理, 2016, 33(2):100-105. ZHANG Q, XU Y J, GUO Q, et al. Application of somatosensory interaction technology in aeroengine virtual assembly experiment[J]. Experimental Technology and Management, 2016, 33(2):100-105(in Chinese). [119] 刘振侠, 高文君, 张丽芬. 航空发动机虚拟教学实验系统的建设与应用[J]. 价值工程, 2013, 32(11):181-182. LIU Z X, GAO W J, ZHANG L F. Construction and application of aero-engine virtual teaching experiment system[J]. Value Engineering, 2013, 32(11):181-182(in Chinese). [120] 武殿梁, 周烁, 许汉中. 增强现实智能装配辅助技术研究[J]. 航空制造技术, 2021, 64(13):26-32. WU D L, ZHOU S, XU H Z. Assembly operation process assistance based on augmented reality and artificial intelligence[J]. Aeronautical Manufacturing Technology, 2021, 64(13):26-32(in Chinese). [121] 戴晟, 赵罡, 于勇, 等. 数字化产品定义发展趋势:从样机到孪生[J]. 计算机辅助设计与图形学学报, 2018, 30(8):1554-1562. DAI S, ZHAO G, YU Y, et al. Trend of digital product definition:from mock-up to twin[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(8):1554-1562(in Chinese). [122] 孙惠斌, 颜建兴, 魏小红, 等. 数字孪生驱动的航空发动机装配技术[J]. 中国机械工程, 2020, 31(7):833-841. SUN H B, YAN J X, WEI X H, et al. Digital twin-driven aero-engine assembly technology[J]. China Mechanical Engineering, 2020, 31(7):833-841(in Chinese). [123] BAO Q W, ZHAO G, YU Y, et al. Ontology-based modeling of part digital twin oriented to assembly[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2022, 236(1-2):16-28. [124] MIR-HAIDARI S E, BEHDINAN K. Advanced test protocols for rapid detection and quantification of nonlinear dynamic responses in aeroengine casing assemblies[J]. Nonlinear Dynamics, 2021, 104(3):2219-2239. [125] 魏企业, 石宏, 孙方成, 等. 航空发动机转子装配螺栓自动拧紧机设计与分析[J]. 机械, 2017, 44(6):67-70. WEI Q Y, SHI H, SUN F C, et al. Design and analysis of aero engine rotor automatic bolt tightening machine structure[J]. Machinery, 2017, 44(6):67-70(in Chinese). [126] 魏企业. 航空发动机螺栓自动拧紧机结构与控制系统设计[D]. 沈阳:沈阳航空航天大学, 2018:70. WEI Q Y. Design of aero-engine automatic bolt tightening machine structure and control system[D]. Shenyang:Shenyang Aerospace University, 2018:70(in Chinese). [127] 王洪明. 航空发动机低压涡轮转子装配工艺研究[J]. 北方工业大学学报, 2019, 31(5):77-83. WANG H M. Research on assembly technology of low pressure turbine rotor of aeroengine[J]. Journal of North China University of Technology, 2019, 31(5):77-83(in Chinese). [128] 陈翔宇, 刘明洋, 徐志刚. 狭小空间内螺栓自动拧紧方法试验研究[J]. 组合机床与自动化加工技术, 2021(9):168-171. CHEN X Y, LIU M Y, XU Z G. Experimental study on automatic tightening method of bolts in narrow space[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021(9):168-171(in Chinese). [129] 李小强, 韩玉杰, 张永生. 一种航空发动机压气机转子盲腔螺母自动拧紧装置及方法:中国, CN112589408A[P]. 2022-05-13. LI X Q, HAN Y J, ZHANG Y S. An automatic tightening device and method for blind chamber screw nut of aero-engine rotor compressor:China, CN112589408A[P]. 2022-05-13(in Chinese). [130] 孙贵青,吕玉红. 航空发动机先进装配工艺检测技术[C]//2015年第二届中国航空科学技术大会. 2015:7. SUN G Q, LV Y H. The advanced detection methods of aero-engine assembly technology[C]//The 2nd China Aeronautical Science and Technology Conference, 2015:7(in Chinese). [131] ABTech. Model EAS1000G Genspect System[EB/OL]. (2021-11-15)[2022-05-16]. https://abtechmfg.com/turbine-engine-assembly-systems/eas/model_eas1000 g_genspect-system/. [132] AMETEK. Aerospect SPS Stack Prediction[EB/OL]. (2016-01-22)[2022-05-16]. https://www.taylor-hobson.com/products/solutions-by-application/turbine-compressor-alignment/aerospect-sps-1000l. [133] Rotary Precision Instruments UK Ltd. Integrated turbine rotor measurement and assembly platforms[EB/OL]. (2021-06-30)[2022-05-16]. https://www.rpiuk.com/products/imap/. [134] 李迪, 赵源, 房建国, 等. 发动机装配检测一体化系统设计与关键工艺[J]. 宇航计测技术, 2019, 39(6):67-72, 47. LI D, ZHAO Y, FANG J G, et al. Design and key process of integration system of engine assembly and inspection[J]. Journal of Astronautic Metrology and Measurement, 2019, 39(6):67-72, 47(in Chinese). [135] 金鑫, 尚可, 郭欢, 等. 一种适用于航空发动机机匣同轴度检测和调整方法:中国,CN108036758A[P]. 2018-05-15. JIN X, SHANG K, GUO H, et al. Coaxiality detecting and adjusting method for cartridge receiver of aero-engine:China, CN108036758A[P]. 2018-05-15(in Chinese). [136] KLOCKE F, VESELOVAC D, AUERBACH T, et al. Intelligent assembly for aero engine components[M]//Intelligent Robotics and Applications. Berlin, Heidelberg:Springer, 2008:927-935. [137] 李伟楠, 朱宁, 石宏, 等. 航空发动机盘类转子柔性装配工装构型研究[J]. 沈阳航空航天大学学报, 2013, 30(3):6-9. LI W N, ZHU N, SHI H, et al. Study on the configuration of flexible assembly tooling for aero-engine discoid rotors[J]. Journal of Shenyang Aerospace University, 2013, 30(3):6-9(in Chinese). [138] 罗鹏. 某重型燃机转子的动平衡技术研究[D]. 大连:大连理工大学, 2016. LUO P. A heavy duty gas turbine rotor dynamic balancing technology research[D]. Dalian:Dalian University of Technology, 2016(in Chinese). [139] 刘儒义. 航空发动机转子组件动平衡夹具的设计[J]. 中国新技术新产品, 2013(8):164. LIU R Y. Design of dynamic balance clamp for aero-engine rotor assembly[J]. China New Technologies and Products, 2013(8):164(in Chinese). [140] 徐军,任春红. 某型风扇转子动平衡装配工装的设计[C]//第五届空天动力联合会议暨中国航天第三专业信息网第41届技术交流会, 2020:5. XU J, REN C H. Design of a certain type of fan rotor dynamic balancing assembly tooling[C]//Proceedings of the Fifth Joint Conference of Aerospace Propulsion (JCAP) and the 41 st Technical Conference of Aerospace Propulsion Technology Information Society (APTIS), 2020:5(in Chinese) [141] GAO H, LEI H F, ZHAO Z, et al. The large aero-engine NC installation method and its multi-axial position adjustment platform design[C]//2013 IEEE International Symposium on Assembly and Manufacturing, 2013:270-273. [142] 王志, 刘清林, 冉健, 等. 航空发动机三自由度装配平台结构设计[J]. 装备制造技术, 2017(7):1-4, 7. WANG Z, LIU Q L, RAN J, et al. Structure design of three degree-of-freedom assembly device for aero-engine[J]. Equipment Manufacturing Technology, 2017(7):1-4, 7(in Chinese). [143] ZHOU T Y, GAO H. Modeling and simulation of the assembly accuracy of aero-engine rotors in the docking processes using a specially designed novel multi-DOF NC motion platform[J]. Aerospace Science and Technology, 2021, 113:106648. [144] ZHOU T Y, GAO H, WANG X P, et al. Error modeling and compensating of a novel 6-DOF aeroengine rotor docking equipment[J]. Chinese Journal of Aeronautics, 2022, 35(6):312-324. |
[1] | 尹泽勇, 李概奇, 石建成, 银越千. 先进通用核心机派生发展的理念、方法及实践[J]. 航空学报, 2024, 45(7): 29713-029713. |
[2] | 黄维娜, 黎方娟, 祁宏斌. 航空发动机数字工程初步研究与发展思考[J]. 航空学报, 2024, 45(5): 529693-529693. |
[3] | 齐国宁, 吴宝海, 符江锋. 高速高压燃油齿轮泵典型卸荷槽对比分析[J]. 航空学报, 2024, 45(5): 529666-529666. |
[4] | 胡明辉, 高金吉, 江志农, 王维民, 邹利民, 周涛, 凡云峰, 王越, 冯家欣, 李晨阳. 航空发动机振动监测与故障诊断技术研究进展[J]. 航空学报, 2024, 45(4): 630194-630194. |
[5] | 陈立芳, 孙亚冰, 周书华, 高强, 乔保栋, 李栋. 基于真实数据反演的风扇转子本机平衡方法[J]. 航空学报, 2024, 45(4): 628321-628321. |
[6] | 马瑞贤, 王鑫, 王开明, 李斌, 廖明夫, 王四季. 航空发动机篦齿⁃橡胶涂层机匣碰摩实验[J]. 航空学报, 2024, 45(4): 628350-628350. |
[7] | 肖袁, 冯坤, 胡明辉, 江志农. 航空发动机转子非稳态振动分量提取方法[J]. 航空学报, 2024, 45(3): 228158-228158. |
[8] | 张超, 曹勇, 赵振强, 张海洋, 孙建波, 王志华, 蔚夺魁. 树脂基复合材料在民用航空发动机中的应用与关键技术研究进展[J]. 航空学报, 2024, 45(2): 28556-028556. |
[9] | 胡应交, 徐峰, 杨志军. 航空发动机整机防结冰试验能力综述[J]. 航空学报, 2023, 44(S2): 729449-729449. |
[10] | 郑新前, 王钧莹, 黄维娜, 伏宇, 程荣辉, 熊洪洋. 航空发动机不确定性设计体系探讨[J]. 航空学报, 2023, 44(7): 27099-027099. |
[11] | 万能, 庄其鑫, 郭彦亨, 常智勇, 王道. 拟合精度约束下航发叶片在机测量采样策略[J]. 航空学报, 2023, 44(7): 427151-427151. |
[12] | 李智豪, 张彪, 李健, 许传龙, 宋兆龙. 预混旋流燃烧火焰三维折射率场重建[J]. 航空学报, 2023, 44(4): 126480-126480. |
[13] | 张健, 张敏, 杜娟, 黄伟亮, 聂超群. 自适应康达喷气控制在高负荷压气机中的试验研究[J]. 航空学报, 2023, 44(22): 128883-128883. |
[14] | 赵淼东, 胡殿印, 毛建兴, 孙海鹤, 秦仕勇, 古远兴, 王荣桥, 田腾跃, 鄢林, 肖值兴. 轮盘低周疲劳模拟件设计及试验[J]. 航空学报, 2023, 44(18): 228320-228320. |
[15] | 郭飞燕, 刘检华, 肖庆东, 肖世宏, 王仲奇. 数字化装配工装工作状态监测评估及适应性控制技术[J]. 航空学报, 2023, 44(16): 427914-427914. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学