1 |
郭向东, 柳庆林, 刘森云, 等. 结冰风洞中过冷大水滴云雾演化特性数值研究[J]. 航空学报, 2020, 41(8): 123655.
|
|
GUO X D, LIU Q L, LIU S Y, et al. Numerical study of supercooled large droplet cloud evolution characteristics in icing wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 123655 (in Chinese).
|
2 |
易贤, 王斌, 李伟斌, 等. 飞机结冰冰形测量方法研究进展[J]. 航空学报, 2017, 38(2): 520711.
|
|
YI X, WANG B, LI W B, et al. Research progress on ice shape measurement approaches for aircraft icing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520711 (in Chinese).
|
3 |
桂业伟, 周志宏, 李颖晖, 等. 关于飞机结冰的多重安全边界问题[J]. 航空学报, 2017, 38(2): 520734.
|
|
GUI Y W, ZHOU Z H, LI Y H, et al. Multiple safety boundaries protection on aircraft icing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520734 (in Chinese).
|
4 |
KIM H, BRAGG M. Effects of leading-edge ice accretion geometry on airfoil performance[C]∥ 17th Applied Aerodynamics Conference. Reston: AIAA, 1999.
|
5 |
BRAGG M, HUTCHISON T, MERRET J. Effect of ice accretion on aircraft flight dynamics[C]∥ 38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000.
|
6 |
钟长生, 王立新. 结冰对飞机动力学特性影响的分析方法及其进展[J]. 飞行力学, 2004, 22(4): 22-24, 84.
|
|
ZHONG C S, WANG L X. Analysis methods and its development about effect of ice accretion on aircraft flight dynamics characteristics[J]. Flight Dynamics, 2004, 22(4): 22-24, 84 (in Chinese).
|
7 |
POKHARIYAL D, BRAGG M, HUTCHISON T, et al. Aircraft flight dynamics with simulated ice accretion[C]∥ 39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001.
|
8 |
袁坤刚, 曹义华. 积冰几何特性对翼型性能影响的神经网络预测[J]. 北京航空航天大学学报, 2008, 34(8): 900-903.
|
|
YUAN K G, CAO Y H. Effect of ice geometry to airfoil performance using neural networks prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(8): 900-903 (in Chinese).
|
9 |
HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
|
10 |
吴正文. 卷积神经网络在图像分类中的应用研究[D]. 成都: 电子科技大学, 2015.
|
|
WU Z W. Application research of convolution neural network in image classification[D]. Chengdu: University of Electronic Science and Technology of China, 2015 (in Chinese).
|
11 |
RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL]. 2015: arXiv: 1511.06434. .
|
12 |
GATYS L A, ECKER A S, BETHGE M. A neural algorithm of artistic style[EB/OL]. 2015: arXiv: 1508.06576. .
|
13 |
KARPATHY A, TODERICI G, SHETTY S, et al. Large-scale video classification with convolutional neural networks[C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 1725-1732.
|
14 |
SEIDE F, LI G, YU D. Conversational speech transcription using context-dependent deep neural networks[C]∥ Interspeech 2011. ISCA: ISCA, 2011: 437-440.
|
15 |
王怡星, 韩仁坤, 刘子扬, 等. 流体力学深度学习建模技术研究进展[J]. 航空学报, 2021, 42(4): 524779.
|
|
WANG Y X, HAN R K, LIU Z Y, et al. Progress of deep learning modeling technology for fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524779 (in Chinese).
|
16 |
张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4): 524689.
|
|
ZHANG W W, KOU J Q, LIU Y L. Prospect of artificial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524689 (in Chinese).
|
17 |
KUTZ J N. Deep learning in fluid dynamics[J]. Journal of Fluid Mechanics, 2017, 814: 1-4.
|
18 |
YILMAZ E, GERMAN B. A convolutional neural network approach to training predictors for airfoil performance[C]∥ 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2017.
|
19 |
ZHANG Y, SUNG W J, MAVRIS D. Application of convolutional neural network to predict airfoil lift coefficient[DB/OL]. arXiv preprint: 1712.10082,2017.
|
20 |
WU J L, WANG J X, XIAO H, et al. Physics-informed machine learning for predictive turbulence modeling: a priori assessment of prediction confidence[DB/OL]. arXiv preprint: 1607.04563, 2016.
|
21 |
HUANG J J, DUAN L, WANG J X, et al. High-mach-number turbulence modeling using machine learning and direct numerical simulation database[C]∥ 55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017.
|
22 |
LING J L, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807: 155-166.
|
23 |
张伟伟, 朱林阳, 刘溢浪, 等. 机器学习在湍流模型构建中的应用进展[J]. 空气动力学学报, 2019, 37(3): 444-454.
|
|
ZHANG W W, ZHU L Y, LIU Y L, et al. Progresses in the application of machine learning in turbulence modeling[J]. Acta Aerodynamica Sinica, 2019, 37(3): 444-454 (in Chinese).
|
24 |
廖鹏, 姚磊江, 白国栋, 等. 基于深度学习的混合翼型前缘压力分布预测[J]. 航空动力学报, 2019, 34(8): 1751-1758.
|
|
LIAO P, YAO L J, BAI G D, et al. Prediction of hybrid airfoil leading edge pressure distribution based on deep learning[J]. Journal of Aerospace Power, 2019, 34(8): 1751-1758 (in Chinese).
|
25 |
RAISSI M, YAZDANI A, KARNIADAKIS G E. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations[J]. Science, 2020, 367(6481): 1026-1030.
|
26 |
GUO X X, LI W, IORIO F. Convolutional neural networks for steady flow approximation[C]∥ Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 481-490.
|
27 |
LEE S, YOU D. Data-driven prediction of unsteady flow over a circular cylinder using deep learning[J]. Journal of Fluid Mechanics, 2019, 879: 217-254.
|
28 |
叶舒然, 张珍, 王一伟, 等. 基于卷积神经网络的深度学习流场特征识别及应用进展[J]. 航空学报, 2021, 42(4): 524736.
|
|
YE S R, ZHANG Z, WANG Y W, et al. Progress in deep convolutional neural network based flow field recognition and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524736 (in Chinese).
|
29 |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
|
30 |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
|
31 |
陈海, 钱炜祺, 何磊. 基于深度学习的翼型气动系数预测[J]. 空气动力学学报, 2018, 36(2): 294-299.
|
|
CHEN H, QIAN W Q, HE L. Aerodynamic coefficient prediction of airfoils based on deep learning[J]. Acta Aerodynamica Sinica, 2018, 36(2): 294-299 (in Chinese).
|
32 |
GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]∥ International Conference on Artificial Intelligence and Statistics, 2010: 249-256.
|
33 |
NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines[C]∥ Proceedings of the 27th International Conference on Machine Learning, 2010: 807-814.
|
34 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]∥ The Advances in Neural Information Processing Systems, 2012: 1097-1105.
|
35 |
何磊, 钱炜祺, 汪清, 等. 机器学习方法在气动特性建模中的应用[J]. 空气动力学学报, 2019, 37(3): 470-479.
|
|
HE L, QIAN W Q, WANG Q, et al. Applications of machine learning for aerodynamic characteristics modeling[J]. Acta Aerodynamica Sinica, 2019, 37(3): 470-479 (in Chinese).
|
36 |
CHEN H, HE L, QIAN W Q, et al. Multiple aerodynamic coefficient prediction of airfoils using a convolutional neural network[J]. Symmetry, 2020, 12(4): 544.
|
37 |
何磊, 钱炜祺, 易贤, 等. 基于转置卷积神经网络的翼型结冰冰形图像化预测方法[J]. 国防科技大学学报, 2021, 43(3): 98-106.
|
|
HE L, QIAN W Q, YI X, et al. Graphical prediction method of airfoil ice shape based on transposed convolution neural networks[J]. Journal of National University of Defense Technology, 2021, 43(3): 98-106 (in Chinese).
|
38 |
BRAGG M B. An experimental study of the aerodynamics of a NACA 0012 airfoil with a simulated glaze ice accretion: NASA-CR-179897[R]. Washington, D.C.: NASA, 1986.
|
39 |
BRAGG M B, et al. Iced-airfoil aerodynamics[J]. Progress in Aerospace Sciences, 2005, 41(5): 323-362.
|
40 |
BRAGG M B, KHODADOUST A, SPRING S A. Measurements in a leading-edge separation bubble due to a simulated airfoil ice accretion[J]. AIAA Journal, 1992, 30(6): 1462-1467.
|
41 |
CARL O G. GRUMMP version 0.2.1 user's guide[R]. Columbia: University of British Columbia, 1997.
|
42 |
张耀冰, 邓有奇, 吴晓军, 等. DLR-F6翼身组合体数值计算[J]. 空气动力学学报, 2011, 29(2): 163-169.
|
|
ZHANG Y B, DENG Y Q, WU X J, et al. Drag prediction of DLR-F6 using MFlow unstructured mesh solver[J]. Acta Aerodynamica Sinica, 2011, 29(2): 163-169 (in Chinese).
|
43 |
KINGMA D P, BA J. Adam: A method for stochastic optimization[DB/OL].arXiv preprint: 1412.6980, 2014.
|