吴沐宸1, 陈江涛2, 夏侯唐凡1, 赵炜2, 刘宇1,3()
收稿日期:
2021-11-15
修回日期:
2021-12-08
接受日期:
2021-12-20
出版日期:
2023-01-15
发布日期:
2021-12-24
通讯作者:
刘宇
E-mail:yuliu@uestc.edu.cn
基金资助:
Muchen WU1, Jiangtao CHEN2, Tangfan XIAHOU1, Wei ZHAO2, Yu LIU1,3()
Received:
2021-11-15
Revised:
2021-12-08
Accepted:
2021-12-20
Online:
2023-01-15
Published:
2021-12-24
Contact:
Yu LIU
E-mail:yuliu@uestc.edu.cn
Supported by:
摘要:
灵敏度分析(SA)能辨识影响复杂系统响应的关键参数,为系统的稳健设计提供决策依据。非参数化概率盒作为一种典型的不精确概率模型,可以同时量化随机和认知2类不确定性,且在实际工程中应用广泛。由于非参数化概率盒耦合了随机和认知不确定性,非参数化概率盒下灵敏度分析方法能阐明输入概率盒的随机和认知不确定性对系统响应不确定性的影响程度。从随机与认知不确定性分离式角度出发,提出了一种非参数化概率盒下分离式灵敏度分析(SSA)方法。构建了格点法和期望值法分离非参数化概率盒的随机和认知不确定性,采用双层嵌套不确定性传播算法建立输出响应的概率盒,提出了最大方差和面积度量指标分别衡量系统输入的随机、认知不确定性对输出的随机、认知不确定性的影响。以NACA0012翼型升阻比预测为例,分析了来流参数和湍流模型参数的随机、认知不确定性对升阻比的随机、认知不确定性的影响。
中图分类号:
吴沐宸, 陈江涛, 夏侯唐凡, 赵炜, 刘宇. 非参数化概率盒下随机与认知不确定性的分离式 灵敏度分析[J]. 航空学报, 2023, 44(1): 226658-226658.
Muchen WU, Jiangtao CHEN, Tangfan XIAHOU, Wei ZHAO, Yu LIU. Separating sensitivity analysis of aleatory and epistemic uncertainties in non-parametric probability-box[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(1): 226658-226658.
表 6
输入参数赋为试验标定值时输出概率盒的面积和最大方差以及相对误差
输入参数 | 面积(相对误差/%) | 最大方差(相对误差/%) |
---|---|---|
10.628 7 (1.02) | 85.600 2 (1.52) | |
10.615 3 (1.14) | 85.466 5 (1.73) | |
10.317 7 (3.91) | 83.072 9 (4.49) | |
10.249 0 (4.55) | 82.597 9 (5.03) | |
10.502 5 (2.19) | 84.508 1 (2.84) | |
10.206 3 (4.95) | 82.006 0 (5.71) | |
10.084 2 (6.09) | 80.882 0 (7) | |
9.711 7 (9.56) | 78.082 9 (10.22) | |
9.590 6 (10.69) | 77.069 8 (11.39) |
1 | 阮文斌, 刘洋, 熊磊. 基于全局灵敏度分析的侧向气动导数不确定性对侧向飞行载荷的影响[J]. 航空学报, 2016, 37(6): 1827-1832. |
RUAN W B, LIU Y, XIONG L. Influence of side aerodynamic derivative uncertainty on side flight load based on global sensitivity analysis[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6): 1827-1832 (in Chinese). | |
2 | BORGONOVO E, PLISCHKE E. Sensitivity analysis: A review of recent advances[J]. European Journal of Operational Research, 2016, 248(3): 869-887. |
3 | 冯凯旋, 吕震宙, 蒋献. 基于偏导数的全局灵敏度指标的高效求解方法[J]. 航空学报, 2018, 39(3): 221699. |
FENG K X, LYU Z Z, JIANG X. Efficient algorithm for estimating derivative-based global sensitivity index[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3): 221699 (in Chinese). | |
4 | 肖思男, 吕震宙, 王薇. 不确定性结构全局灵敏度分析方法概述[J]. 中国科学: 物理学 力学 天文学, 2018, 48(1): 8-25. |
XIAO S N, LV Z Z, WANG W. A review of global sensitivity analysis for uncertainty structure[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2018, 48(1): 8-25 (in Chinese). | |
5 | LIU L J, MA Y Z, PARK C, et al. Robust sequential bifurcation for simulation factor screening under data contamination[J]. Computers & Industrial Engineering, 2019, 129: 102-112. |
6 | CONSTANTINE P G, DIAZ P. Global sensitivity metrics from active subspaces[J]. Reliability Engineering & System Safety, 2017, 162: 1-13. |
7 | BALLESTER-RIPOLL R, PAREDES E G, PAJAROLA R. Sobol tensor trains for global sensitivity analysis[J]. Reliability Engineering & System Safety, 2019, 183: 311-322. |
8 | BORGONOVO E, TARANTOLA S, PLISCHKE E, et al. Transformations and invariance in the sensitivity analysis of computer experiments[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2014, 76(5): 925-947. |
9 | STRAUB D. Value of information analysis with structural reliability methods[J]. Structural Safety, 2014, 49: 75-85. |
10 | 夏侯唐凡, 陈江涛, 邵志栋, 等. 随机和认知不确定性框架下的CFD模型确认度量综述[J]. 航空学报, 2022, 43(8): 025716. |
XIAHOU T F, CHEN J T, SHAO Z D, et al. Model validation metrics for CFD numerical simulation under aleatory and epistemic uncertainty[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 025716 (in Chinese). | |
11 | XIAHOU T F, ZENG Z G, LIU Y, et al. Measuring conflicts of multisource imprecise information in multistate system reliability assessment[J]. IEEE Transactions on Reliability, 7531, PP(99): 1-18. |
12 | LI J W, JIANG C, NI B Y. An efficient uncertainty propagation analysis method for problems involving non-parameterized probability-boxes[J]. Journal of Mechanical Design, 2021, 143(10): 101704. |
13 | LIU J, MENG X H, XU C, et al. Forward and inverse structural uncertainty propagations under stochastic variables with arbitrary probability distributions[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 342: 287-320. |
14 | MENG X H, LIU J, CAO L X, et al. A general frame for uncertainty propagation under multimodally distributed random variables[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 367: 113109. |
15 | ZHANG H, MULLEN R L, MUHANNA R L. Interval Monte Carlo methods for structural reliability[J]. Structural Safety, 2010, 32(3): 183-190. |
16 | JOHNSON N L. Systems of frequency curves generated by methods of translation[J]. Biometrika, 1949, 36(1-2): 149-176. |
17 | SCHUMACHER C, SCHWARZENBERGER F, VESELIĆ I. A Glivenko-Cantelli theorem for almost additive functions on lattices[J]. Stochastic Processes and Their Applications, 2017, 127(1): 179-208. |
18 | FERSON S, TUCKER W T. Sensitivity analysis using probability bounding[J]. Reliability Engineering & System Safety, 2006, 91(10-11): 1435-1442. |
19 | FAES M G R, DAUB M, MARELLI S, et al. Engineering analysis with probability boxes: A review on computational methods[J]. Structural Safety, 2021, 93: 102092. |
20 | BI S F, BROGGI M, WEI P F, et al. The Bhattacharyya distance: Enriching the P-box in stochastic sensitivity analysis[J]. Mechanical Systems and Signal Processing, 2019, 129: 265-281. |
21 | FERRARI R, FROIO D, RIZZI E, et al. Model updating of a historic concrete bridge by sensitivity- and global optimization-based Latin Hypercube Sampling[J]. Engineering Structures, 2019, 179: 139-160. |
22 | BICKEL P J, KUR G, NADLER B. Projection pursuit in high dimensions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(37): 9151-9156. |
23 | 胡政文, 张保强, 邓振鸿. 概率盒全局灵敏度和活跃子空间跨层降维[J]. 航空学报, 2021, 42(9): 224582. |
HU Z W, ZHANG B Q, DENG Z H. Cross-layer dimension reduction based on probability box global sensitivity analysis and active subspace method[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224582 (in Chinese). | |
24 | QIAN W W, CHAI J R, XU Z G, et al. Differential evolution algorithm with multiple mutation strategies based on roulette wheel selection[J]. Applied Intelligence, 2018, 48(10): 3612-3629. |
25 | SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]∥30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. |
26 | ZHU L Y, ZHANG W W, SUN X X, et al. Turbulence closure for high Reynolds number airfoil flows by deep neural networks[J]. Aerospace Science and Technology, 2021, 110: 106452. |
27 | HARRIS C D. Two-dimensional aerodynamic characteristics of the NACA 0012 airfoil in the Langley 8 foot transonic pressure tunnel[R].Washington,D.C.: NASA, 1981. |
28 | 张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4): 524689. |
ZHANG W W, KOU J Q, LIU Y L. Prospect of artificial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524689 (in Chinese). | |
29 | 李秋彦, 李刚, 魏洋天, 等. 先进战斗机气动弹性设计综述[J]. 航空学报, 2020, 41(6): 523430. |
LI Q Y, LI G, WEI Y T, et al. Review of aeroelasticity design for advanced fighter[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523430 (in Chinese). | |
30 | 赵辉, 胡星志, 张健, 等. 湍流模型系数不确定度对翼型绕流模拟的影响[J]. 航空学报, 2019, 40(6): 122581. |
ZHAO H, HU X Z, ZHANG J, et al. Effects of uncertainty in turbulence model coefficients on flow over airfoil simulation[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6): 122581 (in Chinese). | |
31 | KENNEDY M C, O'HAGAN A. Bayesian calibration of computer models[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2001, 63(3): 425-464. |
32 | SCHAEFER J, HOSDER S, WEST T, et al. Uncertainty quantification of turbulence model closure coefficients for transonic wall-bounded flows[J]. AIAA Journal, 2016, 55(1): 195-213. |
33 | LIU H B, JIANG C, LIU J, et al. Uncertainty propagation analysis using sparse grid technique and saddlepoint approximation based on parameterized p-box representation[J]. Structural and Multidisciplinary Optimization, 2019, 59(1): 61-74. |
[1] | 刘汝兵 陈泽帆 林瑞鑫 林麒. 等离子体合成射流主动控制平面叶栅叶片流致振动的实验研究[J]. 航空学报, 0, (): 0-0. |
[2] | 黄霞 刘钒 刘志涛 吴金华. 软式加油数值仿真与风洞试验结果相关性研究[J]. 航空学报, 0, (): 0-0. |
[3] | 王文杰 赵旭 杨龙 李濠君 向粤. 跨速域强地效水平助推滑跑气动机理研究(跨域飞行器关键技术专刊)[J]. 航空学报, 0, (): 0-0. |
[4] | 刘中臣, 钱战森, 李雪飞, 冷岩, 郭大鹏. 发动机喷管羽流对近场声爆特性影响的风洞试验技术[J]. 航空学报, 2023, 44(2): 626952-626952. |
[5] | 尹泽勇, 尤延铖, 朱呈祥, 朱剑锋, 吴了泥, 黄玥. 面向高超声速民机的多通道双涡轮引射冲压组合动力[J]. 航空学报, 2023, 44(2): 627181-627181. |
[6] | 王迪, 冷岩, 杨龙, 韩忠华, 钱战森. 基于广义Burgers方程的声爆传播特性大气湍流影响[J]. 航空学报, 2023, 44(2): 626318-626318. |
[7] | 丁玉临, 韩忠华, 乔建领, 聂晗, 宋文萍, 宋笔锋. 超声速民机总体气动布局设计关键技术研究进展[J]. 航空学报, 2023, 44(2): 626310-626310. |
[8] | 顾奕然, 黄江涛, 陈树生, 刘德园, 高正红. 基于逆向增广Burgers方程的声爆反演技术[J]. 航空学报, 2023, 44(2): 626258-626258). |
[9] | 施方成, 高振勋, 田雨岩, 蒋崇文, 王田天, 李椿萱. 超声速理想膨胀喷流噪声的大涡模拟[J]. 航空学报, 2023, 44(2): 626266-626266. |
[10] | 乔建领, 韩忠华, 丁玉临, 宋文萍, 宋笔锋. 分层大气湍流场对远场声爆传播的影响[J]. 航空学报, 2023, 44(2): 626350-626350. |
[11] | 徐善劼, 吕宏强, 刘中臣, 冷岩, 刘学军. 基于概率模型的声爆试验数据分析[J]. 航空学报, 2023, 44(2): 626269-626269. |
[12] | 赵宾宾, 张恒, 李杰. 翼型结冰状态复杂分离流动数值模拟综述[J]. 航空学报, 2023, 44(1): 627211-627211. |
[13] | 黄雄, 曲仕茹, 张恒, 陈显调. 大型客机增升构型缝翼除冰状态失速特性[J]. 航空学报, 2023, 44(1): 627077-627077. |
[14] | 张恒, 李杰, 赵宾宾. 结冰翼型前缘下垂变弯度容冰特性改善机制[J]. 航空学报, 2023, 44(1): 627114-627114. |
[15] | 束珺, 徐东光, 韩志熔, 李斯, 黄雄. 结冰风洞过冷大水滴试验中混合翼设计[J]. 航空学报, 2023, 44(1): 627182-627182. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
访问总数:6658907今日访问:1341版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学