1 |
马东立, 张良, 杨穆清, 等. 超长航时太阳能无人机关键技术综述[J]. 航空学报, 2020, 41(3): 623418.
|
|
MA D L, ZHANG L, YANG M Q, et al. Review of key technologies of ultra-long-endurance solar powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623418 (in Chinese).
|
2 |
AFONSO F, VALE J, OLIVEIRA É, et al. A review on non-linear aeroelasticity of high aspect-ratio wings[J]. Progress in Aerospace Sciences, 2017, 89: 40-57.
|
3 |
PATIL M J, HODGES D H, CESNIK C E S. Nonlinear aeroelastic analysis of complete aircraft in subsonic flow[J]. Journal of Aircraft, 2000, 37(5): 753-760.
|
4 |
PATIL M J, HODGES D H, CESNIK C E S. Nonlinear aeroelasticity and flight dynamics of high-altitude long-endurance aircraft[J]. Journal of Aircraft, 2001, 38(1): 88-94.
|
5 |
ROMEO G, FRULLA G, CESTINO E, et al. Nonlinear aeroelastic modeling and experiments of flexible wings[C]∥ 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2006.
|
6 |
ZHAO Y H, HU H Y. Structural modeling and aeroelastic analysis of high-aspect-ratio composite wings[J]. Chinese Journal of Aeronautics, 2005, 18(1): 25-30.
|
7 |
PALACIOS R, CESNIK C E S. Geometrically nonlinear theory of composite beams with deformable cross sections[J]. AIAA Journal, 2008, 46(2): 439-450.
|
8 |
PATIL M, HODGES D, CESNIK C. Limit cycle oscillations in high-aspect-ratio wings[C]∥ 40th Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston: AIAA, 1999.
|
9 |
张健, 向锦武. 柔性飞机非线性气动弹性与飞行动力学耦合静、动态特性[J]. 航空学报, 2011, 32(9): 1569-1582.
|
|
ZHANG J, XIANG J W. Static and dynamic characteristics of coupled nonlinear aeroelasticity and flight dynamics of flexible aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9): 1569-1582 (in Chinese).
|
10 |
MURUA J, PALACIOS R, GRAHAM J M R. Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics[J]. Progress in Aerospace Sciences, 2012, 55: 46-72.
|
11 |
LIU Y, XIE C C, YANG C, et al. Gust response analysis and wind tunnel test for a high-aspect ratio wing[J]. Chinese Journal of Aeronautics, 2016, 29(1): 91-103.
|
12 |
杨智春, 张惠, 谷迎松, 等. 考虑几何非线性效应的大展弦比机翼气动弹性分析[J]. 振动与冲击, 2014, 33(16): 72-75.
|
|
YANG Z C, ZHANG H, GU Y S, et al. Aeroelastic analysis of the high aspect ratio wing considering the geometric nonlinearity[J]. Journal of Vibration and Shock, 2014, 33(16): 72-75 (in Chinese).
|
13 |
王伟, 周洲, 祝小平, 等. 几何大变形太阳能无人机非线性气动弹性稳定性研究[J]. 西北工业大学学报, 2015, 33(1): 1-8.
|
|
WANG W, ZHOU Z, ZHU X P, et al. Exploring aeroelastic stability of very flexible solar powered UAV with geometrically large deformation[J]. Journal of Northwestern Polytechnical University, 2015, 33(1): 1-8 (in Chinese).
|
14 |
崔鹏, 韩景龙. 基于CFD/CSD的非线性气动弹性分析方法[J]. 航空学报, 2010, 31(3): 480-486.
|
|
CUI P, HAN J L. Investigation of nonlinear aeroelastic analysis using CFD/CSD[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3): 480-486 (in Chinese).
|
15 |
MCEWAN M I, WRIGHT J R, COOPER J E, et al. A combined modal/finite element analysis technique for the dynamic response of a non-linear beam to harmonic excitation[J]. Journal of Sound and Vibration, 2001, 243(4): 601-624.
|
16 |
MCEWAN M, WRIGHT J, COOPER J, et al. A finite element/modal technique for nonlinear plate and stiffened panel response prediction[C]∥ 19th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2001.
|
17 |
MIGNOLET M P, SOIZE C. Stochastic reduced order models for uncertain geometrically nonlinear dynamical systems[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(45-48): 3951-3963.
|
18 |
HOLLKAMP J J, GORDON R W, SPOTTSWOOD S M. Nonlinear modal models for sonic fatigue response prediction: A comparison of methods[J]. Journal of Sound and Vibration, 2005, 284(3-5): 1145-1163.
|
19 |
KIM K, RADU A G, WANG X Q, et al. Nonlinear reduced order modeling of isotropic and functionally graded plates[J]. International Journal of Non-Linear Mechanics, 2013, 49: 100-110.
|
20 |
FAROOQ U, FEENY B F. Smooth orthogonal decomposition for modal analysis of randomly excited systems[J]. Journal of Sound and Vibration, 2008, 316(1-5): 137-146.
|
21 |
HARMIN Y, COOPER J. Efficient prediction of aeroelastic response including geometric nonlinearities[C]∥ 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2010.
|
22 |
HARMIN Y, COOPER J. Aeroelastic behaviour of a wing including geometric nonlinearities[J]. The Aeronautical Journal, 2011, 115(1174): 767-777.
|
23 |
MEDEIROS R R, CESNIK C E S, COETZEE E B. Computational aeroelasticity using modal-based structural nonlinear analysis[J]. AIAA Journal, 2019, 58(1): 362-371.
|
24 |
TOUZÉ C, VIZZACCARO A, THOMAS O. Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques[J]. Nonlinear Dynamics, 2021, 105(2): 1141-1190.
|