[1] VAN LEER B. CFD education:past, present, future:AIAA-1999-0910[R]. Reston:AIAA, 1999. [2] JAMESON A, SCHMIDT W, TURKEL E. Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes:AIAA-1981-1259[R]. Reston:AIAA, 1981. [3] ROE P L. Approximate Riemann solvers, parameter vectors and difference schemes[J]. Journal of Computational Physics, 1981, 43:357-377. [4] VAN LEER B. Flux vector splitting for Euler equations[R]. Berlin:Lecture Notes in Physics, 1982. [5] JONES W P, LAUNDER B E. The prediction of laminarization with a two-equation model of turbulence[J]. International Journal of Heat and Mass Transfer, 1972, 15(2):301-314. [6] WILCOX D C. Reassessment of the scale-determining equation for advanced turbulence models[J]. AIAA Journal, 1988, 26(11):1299-1310. [7] SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]//30th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1992. [8] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605. [9] VAN LEAR B. Computational fluid dynamics:science or toolbox?[C]//15th AIAA Computational Fluid Dynamics Conference. Reston:AIAA, 2001. [10] 阎超, 席柯, 袁武, 等. DPW系列会议述评与思考[J]. 力学进展, 2011, 41(6):776-784. YAN C, XI K, YUAN W, et al. Review of the drag prediction workshop series[J]. Advances in Mechanics, 2011, 41(6):776-784 (in Chinese). [11] 阎超, 于剑, 徐晶磊, 等. CFD模拟方法的发展成就与展望[J]. 力学进展, 2011, 41(5):562-589. YAN C, YU J, XU J L, et al. On the achievements and prospects for the methods of computational fluid dynamics[J]. Advances in Mechanics, 2011, 41(5):562-589 (in Chinese). [12] 阎超, 屈峰, 赵雅甜, 等. 航空航天CFD物理模型和计算方法的述评与挑战[J]. 空气动力学学报, 2020, 38(5):829-857. YAN C, QU F, ZHAO Y T, et al. Review of development and challenges for physical modeling and numerical scheme of CFD in aeronautics and astronautics[J]. Acta Aerodynamica Sinica, 2020, 38(5):829-857 (in Chinese). [13] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA CR 2014-218178[R]. Washington, D.C.:NASA, 2014. [14] 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报, 2020, 41(5):623344. HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5):623344 (in Chinese). [15] MALIK M, BUSHNELL D. Role of computational fluid dynamics and wind tunnels in aeronautics:NASA TP 2012-217602[R]. Washington, D.C.:NASA, 2012. [16] JOHNSON F T, TINOCO E N, YU N J. Thirty years of development and application of CFD at Boeing Commercial Airplanes, Seattle[J]. Computers & Fluids, 2005, 34(10):1115-1151. [17] TINOCO E N. The changing role of CFD in aircraft development:AIAA-1998-2512[R]. Reston:AIAA, 1998. [18] SPALART P R, VENKATAKRISHNAN V. On the role and challenges of CFD in the aerospace industry[J]. The Aeronautical Journal, 2016, 120(1223):209-232. [19] ABBAS-BAYOUMI A, BECKER K. An industrial view on numerical simulation for aircraft aerodynamic design[J].Journal of Mathematics in Industry, 2011, 1(1):1-14. [20] ADEL A, KLAUS B. Numerical simulation airbus vision and strategy[M]//Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2012. [21] RAJ P. Aircraft design in the 21 st century-implications for design methods[C]//29th AIAA Fluid Dynamics Conference. Reston:AIAA, 1998. [22] CHAPMAN D R. A perspective on aerospace CFD[J]. Aerospace America, 1992,30(1):16-19. [23] ROGERS S E, ROTH K, CAO H V, et al. Computation of viscous flow for a Boeing 777 aircraft in landing configuration[J]. Journal of Aircraft, 2001, 38(6):1060-1068. [24] ANDERSON B, SHUR M, SPALART B, et al. Reduction of aerodynamic noise in a flight deck by use of vortex generators[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2005. [25] KROLL N, ABU-ZURAYK M, DIMITROV D, et al. DLR project Digital-X:towards virtual aircraft design and flight testing based on high-fidelity methods[J]. CEAS Aeronautical Journal, 2016, 7(1):3-27. [26] LUTTON M, CHESSER B L. Overview of the institute for high performance computing applications in air armament (IHAAA)[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2009. [27] BAUM J, LUO H, LOEHNER R, et al. Application of unstructured adaptive moving body methodology to the simulation of fuel tank separation from an F-16 fighter[C]//35th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1997. [28] ANDERSON W D, PATEL S R, BLACK C L. Low speed wind tunnel buffet testing on the F/A-22[J]. Journal of Aircraft, 2006, 43(4):879-885. [29] WOODEN P, AZEVEDO J. Use of CFD in developing the JSF F-35 outer mold lines[C]//24th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2006. [30] PULLIAM T H, JESPERSEN D C. Large scale aerodynamic calculation on Pleiades[C]//21 st International Conference on Parallel Computational Fluid Dynamics, 2009. [31] 徐培敏. 倾转旋翼机气动性能及流场干扰数值模拟[D].北京:北京航空航天大学,2020. XU P M. Numerical simulation of aerodynamic performance and flow field interference of tilt rotor aircraft[D]. Beijing:Beihang University, 2020 (in Chinese). [32] RUBBERT P. AIAA wright brothers lecture:CFD and the changing world of aircraft development:ICAS-94-02[R]. 1994. [33] JAMESON A, YOON S. Lower-upper implicit schemes with multiple grids for the Euler equations[J]. AIAA Journal, 1987, 25(7):929-935. [34] LEE-RAUSCH N, MILHOLEN W, MAVRIPLIS D. Transonic drag prediction using unstructured grid solvers:AIAA-2004-0554[R]. Reston:AIAA, 2004. [35] VAN LEER B. Computational fluid dynamics:science or toolbox?:AIAA-2001-2520[R]. Reston:AIAA, 2001. [36] FUJII K. Progress and future prospects of CFD in aerospace-wind tunnel and beyond[J]. Progress in Aerospace Sciences, 2005, 41(6):455-470. [37] AIAA. 1 st AIAA CFD drag prediction workshop[EB/OL]. http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Workshop1/workshop1.html. [38] AIAA. 2nd AIAA CFD drag prediction workshop[EB/OL]. http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Workshop2/workshop2.html. [39] AIAA. 3rd AIAA CFD drag prediction workshop[EB/OL]. http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Workshop3/workshop3.html. [40] AIAA. 4th AIAA CFD drag prediction workshop[EB/OL]. http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Workshop4/workshop4.html. [41] AIAA. 5th AIAA CFD drag prediction workshop[EB/OL]. http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/. [42] AIAA. 6th AIAA CFD drag prediction workshop[EB/OL]. https://aiaa-dpw.larc.nasa.gov/. [43] RUMSEY C L, RIVERS S M, MORRISON J H. Study of CFD variation on transport configurations from the second drag-prediction workshop[J]. Computers & Fluids, 2005, 34(7):785-816. [44] SALAS M D. Digital flight:The last CFD aeronautical grand challenge[J]. Journal of Scientific Computing, 2006, 28(2):479. [45] 王运涛, 刘刚, 陈作斌. 第一届航空CFD可信度研讨会总结[J]. 空气动力学学报, 2019, 37(2):247-261, 246. WANG Y T, LIU G, CHEN Z B. Summary of the first aeronautical computational fluid dynamics credibility workshop[J]. Acta Aerodynamica Sinica, 2019, 37(2):247-261, 246 (in Chinese). [46] FREMAUX C M, HALL R M. COMSAC:Computational methods for stability and control:NASA/CP-2004-213028[R]. Washington, D.C.:NASA, 2004. [47] SPALART P R. Strategies for turbulence modelling and simulations[J]. International Journal of Heat and Fluid Flow, 2000, 21(3):252-263. [48] DURBIN P A. Some recent developments in turbulence closure modeling[J]. Annual Review of Fluid Mechanics, 2018, 50:77-103. [49] HANJALI' K. Second-moment turbulence closures for CFD:needs and prospects[J]. International Journal of Computational Fluid Dynamics, 1999, 12(1):67-97. [50] RUMSEY C L. Turbulence modeling verification and validation:AIAA-2014-0201[R]. Reston:AIAA, 2014. [51] CHARLES H, BENOIT T. Reynolds-averaged Navier-Stokes modelling for industrial applications and some challenging issues[J].International Journal of Computational Fluid Dynamics,2009, 23(4):295-303. [52] XIAO H, CINNELLA P. Quantification of model uncertainty in RANS simulations:A review[J]. Progress in Aerospace Sciences, 2019, 108:1-31. [53] PRANDTL L. Uber ein neues formelsystem fur die ausgebildete turbulenz[Z]. Nacr Akad Wiss Gottingen, Math-Phys Kl, 1945. [54] KOLMOGOROV A. Equations of turbulent motion of an incompressible fluid, Izv. Acad. Sci., USSR[Z]. Physics, 1942. [55] CHOU P Y. On velocity correlations and the solutions of the equations of turbulent fluctuation[J]. Quarterly of Applied Mathematics, 1945, 3(1):38-54. [56] ROTTA J. Statistische theorie nichthomogener turbulenz[J]. Zeitschrift fur physik, 1951, 129(6):547-572. [57] LAUNDER B E, SPALDING D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(2):269-289. [58] WILCOX D C. Turbulence modeling for CFD[M]. 2nd ed. 1998. [59] WILCOX D C. Turbulence modeling for CFD[M]. 3rd ed. 2006. [60] WILCOX D C. Formulation of the k-w turbulence model revisited[J]. AIAA Journal, 2008, 46(11):2823-2838. [61] MENTER F, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulence model[J]. Turbulence, Heat and Mass Transfer, 2003(4):1-8. [62] MENTER F R. Review of the shear-stress transport turbulence model experience from an industrial perspective[J]. International Journal of Computational Fluid Dynamics, 2009, 23(4):305-316. [63] HUANG P G, BRADSHAW P. Law of the wall for turbulent flows in pressure gradients[J]. AIAA Journal, 1995, 33(4):624-632. [64] HANJALIC K. Will RANS survive LES? A view of perspectives[J]. Journal of Fluids Engineering, 2005, 127(5):831-839. [65] PENG S H, ELIASSON P. A comparison of turbulence models in prediction of flow around the DLR-F6 aircraft configuration[C]//22nd Applied Aerodynamics Conference and Exhibit. Reston:AIAA, 2004. [66] CÉCORA R, EISFELD B, PROBST A, et al. Differential Reynolds stress modeling for aeronautics:AIAA-2012-0465[R]. Reston:AIAA,2012. [67] CÉCORA R D, RADESPIEL R, EISFELD B, et al. Differential Reynolds-stress modeling for aeronautics[J]. AIAA Journal, 2015, 53(3):739-755. [68] CHEN S S, LI Z, YUAN W, et al. Investigations on high-fidelity low-dissipation scheme for unsteady turbulent separated flows[J]. Aerospace Science and Technology, 2021, 115:106785. [69] WANG Z J, FIDKOWSKI K, ABGRALL R, et al. High-order CFD methods:Current status and perspective[J]. International Journal for Numerical Methods in Fluids, 2013, 72(8):811-845. [70] KROLL N, BIELER H, DECONINCK H, et al. ADIGMA-A European initiative on the development of adaptive high-order variational methods for aerospace applications[M]. Springer, 2010. [71] KROLL N, LEICHT T, HIRSCH C, et al. Results and conclusions of the European project IDIHOM on high-order methods for industrial aerodynamic applications[C]//53rd AIAA Aerospace Sciences Meeting. Reston:AIAA, 2015. [72] 钱战森. Godunov型显式大时间步长格式研究进展[J]. 航空学报, 2020, 41(7):023575. QIAN Z S. Research progress of Godunov type explicit large time step scheme[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7):023575 (in Chinese). [73] 朱文庆, 肖志祥, 符松. 使用IDDES方法预测飞行速度对喷流噪声的影响[J]. 空气动力学学报, 2018, 36(3):463-469. ZHU W Q, XIAO Z X, FU S. The effects of flight velocity on jet noise are simulated by improved delayed detached eddy simulation with the modification of grid scale definition[J]. Acta Aerodynamica Sinica, 2018, 36(3):463-469 (in Chinese). [74] DURAISAMY K, SPALART P, RUMSEY C. Status, emerging ideas and future directions of turbulence modeling research in aeronautics:NASA/TM-2017-219682[R]. Washington, D.C.:NASA, 2017. [75] LOZANO-DURÁN A, BOSE S T, MOIN P. Performance of wall-modeled LES with boundary-layer-conforming grids for external aerodynamics[J]. AIAA Journal, 2022, 60(2):747-766. [76] CHAPMAN D R. Computational aerodynamics development and outlook[J]. AIAA Journal, 1979, 17(12):1293-1313. [77] TERRACOL M, MANOHA E. Wall-resolved large-eddy simulation of a three-element high-lift airfoil[J]. AIAA Journal, 2020, 58(2):517-536. [78] BUSH R H, CHYCZEWSKI T S, DURAISAMY K, et al. Recommendations for future efforts in RANS modeling and simulation[C]//AIAA Scitech 2019 Forum. Reston:AIAA, 2019. [79] RUMSEY C, SMITH B, HUANG G. Description of a website resource for turbulence modeling verification and validation[C]//40th Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2010. [80] BLATTNIG S, LUCKRING J, MORRISON J, et al. NASA standard for models and simulations:philosophy and requirements overview[C]//47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2009. [81] EISFELD B, RUMSEY C, TOGITI V. Verification and validation of a second-moment-closure model[J]. AIAA Journal, 2016, 54(5):1524-1541. |