[1] OLSON E C, SELBERG B P. Experimental determination of improved aerodynamic characteristics utilizing biplane wing configurations[J]. Journal of Aircraft, 1976, 13(4):256-261. [2] WOLKOVITCH J. Subsonic VSTOL aircraft configurations with tandem wings[J]. Journal of Aircraft, 1979, 16(9):605-611. [3] RHODES M D, SELBERG B P. Benefits of dual wings over single wings for high-performance business airplanes[J]. Journal of Aircraft, 1984, 21(2):116-127. [4] ROSID N H, IRSYAD LUKMAN E, AHMAD FADLILLAH M, et al. Aerodynamic characteristics of tube-launched tandem wing unmanned aerial vehicle[J]. Journal of Physics:Conference Series, 2018, 1005:012015. [5] ZHANG G Q, YU S C M. Unsteady aerodynamics of a morphing tandem-wing unmanned aerial vehicle[J]. Journal of Aircraft, 2012, 49(5):1315-1323. [6] YUE T, WANG L X, AI J Q. Flight performance characteristics of a tailless folding wing morphing aircraft:AIAA-2013-0623[R]. Reston:AIAA, 2013. [7] SEIGLER T M, NEAL D A. Analysis of transition stability for morphing aircraft[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(6):1947-1954. [8] GAO L, JIN H Z, ZHAO J, et al. Flight dynamics modeling and control of a novel catapult launched tandem-wing micro aerial vehicle with variable sweep[J]. IEEE Access, 6:42294-42308. [9] ZHU Z, GUO H W, MA J J. Aerodynamic layout optimization design of a barrel-launched UAV wing considering control capability of multiple control surfaces[J]. Aerospace Science and Technology, 2019, 93:105297. [10] 李文娟. 二次折叠翼面展开机构设计及工作可靠性仿真研究[D]. 杭州:浙江理工大学, 2016:7-9. LI W J. Design and working reliability simulation research on deployable mechanism of twice folding wing[D]. Hangzhou:Zhejiang Sci-Tech University, 2016:7-9(in Chinese). [11] 昌敏, 孟晓轩, 陈娇娇, 等. 筒式发射的折叠翼无人机:CN209274879U[P]. 2019-08-20. CHANG M, MENG XX, CHEN J J, et al. Folding-wing unmanned aerial vehicle for barrel-type launching:CN209274879U[P]. 2019-08-20(in Chinese). [12] SEDERBERG T W, PARRY S R. Free-form deformation of solid geometric models[C]//Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques. New York:ACM, 1986:151-160. [13] 陈颂. 基于梯度的气动外形优化设计方法及应用[D]. 西安:西北工业大学, 2016:49-53. CHEN S. Gradient based aerodynamic shape optimization design and applications[D]. Xi'an:Northwestern Polytechnical University, 2016:49-53(in Chinese). [14] LAMOUSIN H J, WAGGENSPACK N N. NURBS-based free-form deformations[J]. IEEE Computer Graphics and Applications, 1994, 14(6):59-65. [15] 王丹, 白俊强, 黄江涛. FFD方法在气动优化设计中的应用[J]. 中国科学:物理学力学天文学, 2014, 44(3):267-277. WANG D, BAI J Q, HUANG J T. The application of FFD method in aerodynamic optimization design[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2014, 44(3):267-277(in Chinese). [16] SHEN Y, HUANG W, YAN L, et al. Constraint-based parameterization using FFD and multi-objective design optimization of a hypersonic vehicle[J]. Aerospace Science and Technology, 2020, 100:105788. [17] 黄江涛, 高正红, 白俊强, 等. 基于任意空间属性FFD技术的融合式翼稍小翼稳健型气动优化设计[J]. 航空学报, 2013, 34(1):37-45. HUANG J T, GAO Z H, BAI J Q, et al. Study of robust winglet design based on arbitrary space shape FFD technique[J]. ActaAeronautica et Astronautica Sinica, 2013, 34(1):37-45(in Chinese). [18] 张伟伟, 高传强, 叶正寅. 气动弹性计算中网格变形方法研究进展[J]. 航空学报, 2014, 35(2):303-319. ZHANG W W, GAO C Q, YE Z Y. Research progress on mesh deformation method in computational aeroelasticity[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):303-319(in Chinese). [19] 唐静, 邓有奇, 马明生, 等. 飞翼气动优化中参数化和网格变形技术[J]. 航空学报, 2015, 36(5):1480-1490. TANG J, DENG Y Q, MA M S, et al. Parameterization and grid deformationtechniques for flying-wing aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1480-1490(in Chinese). [20] 王荣, 白鹏. 基于FFD与网格重构的飞翼无人机外形优化设计[J]. 航空科学技术, 2018, 29(10):43-47. WANG R, BAI P. Aerodynamic design optimization for a flying-wing UAV based on FFD and grid reconstruction[J]. Aeronautical Science & Technology, 2018, 29(10):43-47(in Chinese). [21] Hounjet M H L, Meijer J J. Evaluation of elastomechanical and aerodynamic data transfer methods for non-planar configurations in computational aeroelastic analysis[M]. Amsterdan:National Aerospace Laboratory NLR, 1995. [22] 张增海, 谢军龙. 低雷诺数翼型的气动外形优化设计[J]. 能源与节能, 2020(3):50-52, 59. ZHANG Z H, XIEJ L. Aerodynamic shape optimization design of low Reynolds number airfoil[J]. Energy and Energy Conservation, 2020(3):50-52, 59(in Chinese). [23] 李润泽, 张宇飞, 陈海昕. 超临界机翼多目标气动优化设计的策略与方法[J]. 航空学报, 2020, 41(5):623409. LI R Z, ZHANG Y F, CHEN H X. Strategies and methods for multi-objective aerodynamic optimization design for supercritical wings[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5):623409(in Chinese). [24] 李霓, 布树辉, 尚柏林, 等. 飞行器智能设计愿景与关键问题[J]. 航空学报, 2021, 42(4):524752. LI N, BU S H, SHANG B L,et al. Aircraft intelligent design:visions and key technologies[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524752(in Chinese). [25] 童歆, 羌晓青, 虞培祥, 等. 基于曲率分布控制的叶型前缘设计方法[J]. 航空学报, 2021, 42(7):124712. TONG X, QIANG X Q, YU P X,et al. Leading edge design method based on curvature distribution control[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7):124712(in Chinese). [26] HOUCK C R, JOINES J A, KAY M G. A genetic algorithm for function optimization:A MATLAB implementation[J]. Ncsu-ie tr, 1995, 95(09):1-10. [27] 郭小良, 裴锦华, 杨忠清, 等. 无人机折叠机翼展开运动特性研究[J]. 南京航空航天大学学报, 2006, 38(4):438-441. GUO X L, PEI J H, YANG Z Q, et al. Movementcharacteristic of UAV folding wings[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2006, 38(4):438-441(in Chinese). |