赵轲1,2(), 邓俊1,2, 黄江涛3, 陈树生1,2, 高正红1,2
收稿日期:
2023-07-26
修回日期:
2023-08-21
接受日期:
2023-10-12
出版日期:
2023-10-25
发布日期:
2023-10-24
通讯作者:
赵轲
E-mail:zhaoke@nwpu.edu.cn
基金资助:
Ke ZHAO1,2(), Jun DENG1,2, Jiangtao HUANG3, Shusheng CHEN1,2, Zhenghong GAO1,2
Received:
2023-07-26
Revised:
2023-08-21
Accepted:
2023-10-12
Online:
2023-10-25
Published:
2023-10-24
Contact:
Ke ZHAO
E-mail:zhaoke@nwpu.edu.cn
Supported by:
摘要:
飞翼布局由于在气动、隐身和结构等方面的综合优势,是未来最有潜力的飞行器气动布局形式。关于飞翼布局的气动设计研究,学术界开展了大量的设计分析,研究发现低速起降性能和操控是飞翼布局性能和安全的主要难点。对于飞翼布局无人机和作战飞机,由于隐身设计的影响,使得其低速起降性能、操控特性更加严苛,以往的研究主要集中在高速巡航的设计,关于低速设计研究很少,因此基于高性能离散伴随优化设计平台,开展了某飞翼布局无人机的高低速综合设计研究,分析对比了不同低速设计模型对飞机低速特性的影响,在此基础上,建立了高低综合设计模型,全面提升了飞机的高低速性能,经过对结果的分析,总结了高低速一体化设计的要点和规律,为飞翼布局的气动设计提供了有力的设计模型和参考。
中图分类号:
赵轲, 邓俊, 黄江涛, 陈树生, 高正红. 飞翼布局高低速一体化气动优化设计[J]. 航空学报, 2024, 45(15): 129367-129367.
Ke ZHAO, Jun DENG, Jiangtao HUANG, Shusheng CHEN, Zhenghong GAO. Aerodynamic optimization design of high and low speed integration for flying wing layout[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(15): 129367-129367.
1 | 车竞, 何开锋, 钱炜祺. 制空型无人机的关键技术、气动布局及特性[J]. 空气动力学学报, 2017, 35(1): 13-19, 26. |
CHE J, HE K F, QIAN W Q. Key technique and aerodynamic configuration characteristic of UCAV with command of the air[J]. Acta Aerodynamica Sinica, 2017, 35(1): 13-19, 26 (in Chinese). | |
2 | LIEBECK R H. Design of the blended wing body subsonic transport[J]. Journal of Aircraft, 2004, 41(1): 10-25. |
3 | MIALON B, FOL T, BONNAUD C. Aerodynamic optimization of subsonic flying wing configurations[C]∥20th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2002: 2931. |
4 | QIN N, VAVALLE A, LE MOIGNE A, et al. Aerodynamic considerations of blended wing body aircraft[J]. Progress in Aerospace Sciences, 2004, 40(6): 321-343. |
5 | LI Y H, QIN N. Influence of spanwise load distribution on blended-wing-body performance at transonic speed[J]. Journal of Aircraft, 2020, 57(3): 408-417. |
6 | HEMA A, SEGONDS S, CHRISTIAN B. Surrogate model development for optimized blended-wing-body aerodynamics[J]. Journal of Aircraft, 2023, 60(2): 437-448. |
7 | ZADEH P M, SAYADI M. An efficient aerodynamic shape optimization of blended wing body UAV using multi-fidelity models[J]. Chinese Journal of Aeronautics, 2018, 31(6): 1165-1180. |
8 | 马超, 王立新. 飞翼布局作战飞机起降特性分析[J]. 北京航空航天大学学报, 2009, 35(4): 429-433. |
MA C, WANG L X. Take-off and landing features of flying-wing configuration fighter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(4): 429-433 (in Chinese). | |
9 | 余永刚, 黄勇, 周铸, 等. 飞翼布局气动外形设计[J]. 空气动力学学报, 2017, 35(6): 832-836, 878. |
YU Y G, HUANG Y, ZHOU Z, et al. Aerodynamic design of a flying-wing aircraft[J]. Acta Aerodynamica Sinica, 2017, 35(6): 832-836, 878 (in Chinese). | |
10 | 刘晓冬, 张沛良, 何光洪, 等. 基于伴随方法的飞翼布局多目标气动优化设计[J]. 西北工业大学学报, 2021, 39(4): 753-760. |
LIU X D, ZHANG P L, HE G H, et al. Multi-objective aerodynamic optimization of flying-wing configuration based on adjoint method[J]. Journal of Northwestern Polytechnical University, 2021, 39(4): 753-760 (in Chinese). | |
11 | 甘文彪, 周洲, 许晓平. 基于准则的大展弦比飞翼气动设计[J]. 北京航空航天大学学报, 2015, 41(9): 1608-1614. |
GAN W B, ZHOU Z, XU X P. Aerodynamic design of high-aspect-ratio flying wing based on criteria[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(9): 1608-1614 (in Chinese). | |
12 | SHI Y Y, LAN Q S, LAN X Y, et al. Robust optimization design of a flying wing using adjoint and uncertainty-based aerodynamic optimization approach[J]. Structural and Multidisciplinary Optimization, 2023, 66(5): 110. |
13 | DIMOPOULOS T, PALIAIKOS D, CHRISTOUETAL V. Experimental and computational investigation of the vortical Structures generated from a blended-wing-body UAV model[J]. Aerospace Science and Technology, 2023, 139: 108377. |
14 | CUMMINGS R M, LIERSCH C M, SCHÜTTE A, et al. Aerodynamics and conceptual design studies on an unmanned combat aerial vehicle configuration[J]. Journal of Aircraft, 2016, 55(2): 454-474. |
15 | CUMMINGS R M. Introduction to special section—Computational and experimental aerodynamics and stability & control for an agile UAV[J]. Journal of Aircraft, 2018, 55(2): 453. |
16 | CUMMINGS R M. Introduction: SACCON unihabited combat aerial vehicle experimental and numerical simulations[J]. Journal of Aircraft, 2012, 49(6): 1541. |
17 | PETTERSON K. CFD analysis of the low-speed aerodynamic characteristics of a UCAV[C]∥44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006: 1259. |
18 | VICROY D D. Blended-wing-body low-speed flight dynamics: summary of ground tests and sample results (invited)[C]∥47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009: 933. |
19 | GATLIN G M, VICROY D D, CARTER M B. Experimental investigation of the low-speed aerodynamic characteristics of a 5.8-percent scale hybrid wing body configuration[C]∥30th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2012: 2669. |
20 | VICROY D D, DICKEY E D, PRINCEN N, et al. Overview of low-speed aerodynamic tests on a 5.75% scale blended-wing-body twin jet configuration (invited)[C]∥Proceedings of the 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016: AIAA2016-0009. |
21 | PANAGIOTOU P, YAKINTHOS K. Parametric aerodynamic study of Blended-Wing-Body platforms at low subsonic speeds for UAV applications[C]∥35th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2017: 3737. |
22 | ARTHUR M, PETTERSON K. A computational study of the low-speed flow over the 1303 UCAV configuration[C]∥25th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2007: 4568. |
23 | SCHÜTTE A, VORMWEG J, MAYE R G, et al. Aerodynamic shaping design and vortical flow design aspects of a 53deg swept flying wing configuration[C]∥ 2018 Applied Aerodynamics Conference. Reston: AIAA, 2018: 2841. |
24 | 单继祥, 黄勇, 张旭. 头部厚度分布对飞翼布局失速特性影响研究[J]. 中国科学: 技术科学, 2017, 47(9): 985-991. |
SHAN J X, HUANG Y, ZHANG X. Effect of nose thickness distribution on the stall characteristics of low aspect ratio flying wing configuration at transonic flow[J]. Scientia Sinica (Technologica), 2017, 47(9): 985-991 (in Chinese). | |
25 | TAO Y, LI Y H, ZHANG Z, et al. Transonic wing stall of a blended flying wing common research model based on DDES method[J]. Chinese Journal of Aeronautics, 2016, 29(6): 1506-1516. |
26 | 王方剑, 解克, 刘金, 等. 小展弦比飞翼标模非定常流动及自由摇滚特性[J]. 航空学报, 2023, 44(4): 126449. |
WANG F J, XIE K, LIU J, et al. Unsteady flow and wing rock characteristics of low aspect ratio flying-wing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 126449 (in Chinese). | |
27 | 邵帅, 郭正, 贾高伟, 等. 中等展弦比飞翼布局无人机后缘射流滚转控制[J]. 航空学报, 2023, 44(10): 54-64. |
SHAO S, GUO Z, JIA G W, et al. Roll control of medium-aspect-ratio flying-wing UCAV based on trailing-edge jet[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(10): 54-64 (in Chinese). | |
28 | 冯立好, 魏凌云, 董磊, 等. 飞翼布局飞机耦合运动失稳的主动流动控制[J]. 航空学报, 2022, 43(10): 527353. |
FENG L H, WEI L Y, DONG L, et al. Active flow control for coupled motion instability of flying-wing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527353 (in Chinese). | |
29 | 陈宪, 陈诚, 黄江涛, 等. 腹部襟翼对飞翼布局飞行器起降气动特性的影响[J]. 航空学报, 2022, 43(3): 125028. |
CHEN X, CHEN C, HUANG J T, et al. Effects of belly flap on take-off and landing characteristics of a flying-wing vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 125028 (in Chinese). | |
30 | MARTINS J R R A. Aerodynamic design optimization: Challenges and perspectives[J]. Computers & Fluids, 2022, 239: 105391. |
31 | 黄江涛, 刘刚, 高正红, 等. 飞行器多学科耦合伴随体系的现状与发展趋势[J]. 航空学报, 2020, 41(5): 623404. |
HUANG J T, LIU G, GAO Z H, et al. Current situation and development trend of multidisciplinary coupled adjoint system for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623404 (in Chinese). | |
32 | 黄江涛, 周琳, 陈宪, 等. 基于NS/CFIE伴随方程的飞行器气动隐身综合优化[J]. 航空学报, 2023, 44(12): 127757. |
HUANG J T, ZHOU L, CHEN X, et al. Integrated aerodynamic and stealth optimization of aircraft based on NS/CFIE adjoint equations[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(12): 127757 (in Chinese). | |
33 | 邓俊, 高正红, 黄江涛, 等. 基于迎风格式伴随方程的飞行器边界特性设计方法[J]. 北京航空航天大学学报, doi: 10.13700/j.bh.1001-5965.2022.0964 . |
DENG J, GAO Z H, HUANG J T, et al. Optimization design method of aircraft boundary characteristics based on upwind scheme adjoint equation[J]. Journal of Beijing University of Aeronautics and Astronautics, doi: 10.13700/j.bh.1001-5965.2022.0964 (in Chinese). | |
34 | SEDERBERG T W, PARRY S R. Free-form deformation of solid geometric models[C]∥Proceedings of the 13th annual conference on Computer graphics and interactive techniques. New York: ACM, 1986: 151-160. |
35 | LAMOUSIN H J, WAGGENSPACK N N. NURBS-based free-form deformations[J]. IEEE Computer Graphics and Applications, 1994, 14(6): 59-65. |
36 | SAMAREH J A. Survey of shape parameterization techniques for high-fidelity multidisciplinary shape optimization[J]. AIAA Journal, 2001, 39(5): 877-884. |
37 | SMITH R E. Transfinite interpolation (TFI) generation systems[M]∥WEATHERILL N P, THOMPSON J F, SONI B K. Handbook of Grid Generation. Boca Raton: CRC Press, 1999. |
38 | BOER A D, VAN DER SCHOOT M S, BIJL H. Mesh deformation based on radial basis function interpolation[J]. Computers and Structures, 2007, 85(11-14): 784-795. |
39 | 周铸, 余永刚, 刘刚, 等. 飞翼布局组合舵面航向控制特性综合研究[J]. 航空学报, 2020, 41(6): 523422. |
ZHOU Z, YU Y G, LIU G, et al. Comprehensive study on yaw control characteristic of combined control surfaces of flying wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523422 (in Chinese). | |
40 | 牟斌. 流动控制数值模拟研究[D].绵阳:中国空气动力研究与发展中心, 2006. |
MOU B. Numerical simulation and investigation of flow control[D]. Mianyang: China Aerodynamic Research and Development Center, 2006 (in Chinese). | |
41 | 陈宪, 陈诚, 黄江涛, 等. 飞翼布局飞行器可伸缩腹部襟翼气动分析[J]. 航空工程进展, 2022, 13(2): 9-17. |
CHEN X, CHEN C, HUANG J T, et al. Aerodynamic analysis of retractable belly flap for a flying wing aircraft[J]. Advances in Aeronautical Science and Engineering, 2022, 13(2): 9-17 (in Chinese). | |
42 | WHITTENBURY J. Configuration design development of the navy UCAS-D X-47B[C]∥AIAA Centennial of Naval Aviation Forum “100 Years of Achievement and Progress”. Reston: AIAA, 2011: 7041. |
[1] | 王海峰, 刘坤澎, 江泓鑫, 杜晨曦. 螺旋桨多设计点气动优化方法和变桨距角策略[J]. 航空学报, 2024, 45(9): 528831-528831. |
[2] | 柳家齐, 陈荣钱, 楼锦华, 韩旭, 吴昊, 尤延铖. 基于深度学习的高速直升机旋翼翼型气动优化设计[J]. 航空学报, 2024, 45(9): 529828-529828. |
[3] | 王雪鹤, 柴春硕, 邢世龙, 樊枫, 黄水林. 共轴高速直升机反流区翼型设计及减阻机理[J]. 航空学报, 2024, 45(9): 529960-529960. |
[4] | 孙蓬勃, 周洲, 李旭, 王科雷. 目标气动特性下动力翼参数影响分析与优化[J]. 航空学报, 2024, 45(6): 629368-629368. |
[5] | 王浩祥, 肖尧, 张凯凯, 李广利, 常思源, 田中伟, 崔凯. 机体尾缘形状对高压捕获翼构型亚声速特性影响[J]. 航空学报, 2023, 44(6): 127215-127215. |
[6] | 赵欢, 高正红, 夏露. 基于新型高维代理模型的气动外形设计方法[J]. 航空学报, 2023, 44(5): 126924-126924. |
[7] | 刘超宇, 屈峰, 孙迪, 刘传振, 钱战森, 白俊强. 基于离散伴随的高超声速密切锥乘波体气动优化设计[J]. 航空学报, 2023, 44(4): 126664-126664. |
[8] | 孙士珺, 李晓龙, 刘艳明, 王建华, 王松涛. 宽速域来流对超声通流风扇叶型气动性能的影响[J]. 航空学报, 2023, 44(21): 528523-528523. |
[9] | 王晓峰, 屈峰, 付俊杰, 王泽宇, 刘超宇, 白俊强. 基于离散伴随的高超内转式进气道气动优化设计[J]. 航空学报, 2023, 44(19): 128352-128352. |
[10] | 田珊珊, 金亮, 杜兆波, 钟翔宇, 黄伟, 刘远洋. 基于鼓包的激波/边界层干扰控制研究进展[J]. 航空学报, 2023, 44(18): 28411-028411. |
[11] | 田洁华, 孙迪, 屈峰, 白俊强. 基于CST⁃GAN的翼型参数化方法[J]. 航空学报, 2023, 44(18): 128280-128280. |
[12] | 刘晓东, 刘朋欣, 李辰, 孙东, 袁先旭. 高焓激波/湍流边界层干扰直接数值模拟[J]. 航空学报, 2023, 44(13): 127832-127832. |
[13] | 邵帅, 郭正, 贾高伟, 陈清阳, 侯中喜, 张来平. 中等展弦比飞翼布局无人机后缘射流滚转控制[J]. 航空学报, 2023, 44(10): 127437-127437. |
[14] | 胡守超, 庄宇, 李贤, 江涛. 高超声速气动热标模HyHERM-Ⅰ试验[J]. 航空学报, 2022, 43(S2): 233-248. |
[15] | 程剑锐, 施崇广, 瞿丽霞, 徐悦, 尤延铖, 朱呈祥. 二维弯曲激波/湍流边界层干扰流动理论建模[J]. 航空学报, 2022, 43(9): 125993-125993. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学