[1] NAIR R R, BEHERA L, KUMAR S. Event-triggered finite-time integral sliding mode controller for consensus-based formation of multirobot systems with disturbances[J]. IEEE Transactions on Control Systems Technology, 2019, 27(1):39-47. [2] LIAO R W, HAN L, DONG X W, et al. Finite-time formation-containment tracking for second-order multi-agent systems with a virtual leader of fully unknown input[J]. Neurocomputing, 2020, 415:234-246. [3] KAMEL M A, YU X, ZHANG Y M. Formation control and coordination of multiple unmanned ground vehicles in normal and faulty situations:a review[J]. Annual Reviews in Control, 2020, 49:128-144. [4] WANG Y Q, WU Q H, WANG Y. Distributed cooperative control for multiple quadrotor systems via dynamic surface control[J]. Nonlinear Dynamics, 2014, 75(3):513-527. [5] LIU H, MA T, LEWIS F L, et al. Robust formation control for multiple quadrotors with nonlinearities and disturbances[J]. IEEE Transactions on Cybernetics, 2020, 50(4):1362-1371. [6] ISLAM S, LIU P X, EL SADDIK A. Robust control of four-rotor unmanned aerial vehicle with disturbance uncertainty[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3):1563-1571. [7] ZHAO W B, LIU H, LEWIS F L, et al. Data-driven optimal formation control for quadrotor team with unknown dynamics[J]. IEEE Transactions on Cybernetics, 9486, PP(99):1-10. [8] ZHAO W B, LIU H, LEWIS F L. Robust formation control for cooperative underactuated quadrotors via reinforcement learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 3711, PP(99):1-11. [9] ZHANG W Q, DONG C Y, RAN M P, et al. Fully distributed time-varying formation tracking control for multiple quadrotor vehicles via finite-time convergent extended state observer[J]. Chinese Journal of Aeronautics, 2020, 33(11):2907-2920. [10] SONG Y D, HE L, ZHANG D, et al. Neuroadaptive fault-tolerant control of quadrotor UAVs:A more affordable solution[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(7):1975-1983. [11] YU Z Q, LIU Z X, ZHANG Y M, et al. Decentralized fault-tolerant cooperative control of multiple UAVs with prescribed attitude synchronization tracking performance under directed communication topology[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(5):685-700. [12] LIANG Y Q, DONG Q, ZHAO Y J. Adaptive leader-follower formation control for swarms of unmanned aerial vehicles with motion constraints and unknown disturbances[J]. Chinese Journal of Aeronautics, 2020, 33(11):2972-2988. [13] WANG R, LIU J K. Adaptive formation control of quadrotor unmanned aerial vehicles with bounded control thrust[J]. Chinese Journal of Aeronautics, 2017, 30(2):807-817. [14] HUANG Y F, LIU W, LI B, et al. Finite-time formation tracking control with collision avoidance for quadrotor UAVs[J]. Journal of the Franklin Institute, 2020, 357(7):4034-4058. [15] JIA Z Y, WANG L L, YU J Q, et al. Distributed adaptive neural networks leader-following formation control for quadrotors with directed switching topologies[J]. ISA Transactions, 2019, 93:93-107. [16] ZHANG W Q, DONG C Y, RAN M P, et al. Fully distributed time-varying formation tracking control for multiple quadrotor vehicles via finite-time convergent extended state observer[J]. Chinese Journal of Aeronautics, 2020, 33(11):2907-2920. [17] GARCÍA-DELGADO L, DZUL A, SANTIBÁÑEZ V, et al. Quadrotors formation based on potential functions with obstacle avoidance[J]. IET Control Theory & Applications, 2012, 6(12):1787-1802. [18] ARUL S H, MANOCHA D. DCAD:Decentralized collision avoidance with dynamics constraints for agile quadrotor swarms[J]. IEEE Robotics and Automation Letters, 2020, 5(2):1191-1198. [19] DONG X W, HU G Q. Time-varying formation tracking for linear multiagent systems with multiple leaders[J]. IEEE Transactions on Automatic Control, 2017, 62(7):3658-3664. [20] REKABI F, SHIRAZI F A, SADIGH M J. Distributed nonlinear H∞ control algorithm for multi-agent quadrotor formation flying[J]. ISA Transactions, 2020, 96:81-94. [21] CHEN M, SHI P, LIM C C. Adaptive neural fault-tolerant control of a 3-DOF model helicopter system[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2016, 46(2):260-270. [22] CHEN M, GE S S, REN B B. Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints[J]. Automatica, 2011, 47(3):452-465. [23] LEI X S, LU P. The adaptive radial basis function neural network for small rotary-wing unmanned aircraft[J]. IEEE Transactions on Industrial Electronics, 2014, 61(9):4808-4815. [24] BECHLIOULIS C P, ROVITHAKIS G A. Prescribed performance adaptive control for multi-input multi-output affine in the control nonlinear systems[J]. IEEE Transactions on Automatic Control, 2010, 55(5):1220-1226. [25] CHEN M. Disturbance attenuation tracking control for wheeled mobile robots with skidding and slipping[J]. IEEE Transactions on Industrial Electronics, 2017, 64(4):3359-3368. [26] VAMVOUDAKIS K G, LEWIS F L. Online actorcritic algorithm to solve the continuous-time infinite horizon optimal control problem[J]. Automatica, 2010, 46(5):878-888. [27] ZHANG C, MA G F, SUN Y C, et al. Simple model-free attitude control design for flexible spacecraft with prescribed performance[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(8):2760-2771. [28] 刘金琨. 滑模变结构控制MATLAB仿真[M]. 2版. 北京:清华大学出版社, 2012. LIU J K. Sliding mode control design and matlab simulation[M]. 2nd ed. Beijing:Tsinghua University Press, 2012(in Chinese). [29] YANG H L, JIANG B, YANG H, et al. Synchronization of multiple 3-DOF helicopters under actuator faults and saturations with prescribed performance[J]. ISA Transactions, 2018, 75:118-126. |