1 |
ZHAO W B, LIU H, LEWIS F L, et al. Robust visual servoing control for ground target tracking of quadrotors[J]. IEEE Transactions on Control Systems Technology, 2020, 28(5): 1980-1987.
|
2 |
LIANG X, FANG Y C, SUN N, et al. A novel energy-coupling-based hierarchical control approach for unmanned quadrotor transportation systems[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(1): 248-259.
|
3 |
HÖNIG W, PREISS J A, SATISH KUMAR T K, et al. Trajectory planning for quadrotor swarms[J]. IEEE Transactions on Robotics, 2018, 34(4): 856-869.
|
4 |
JIN X Z, CHE W W, WU Z G, et al. Robust adaptive general formation control of a class of networked quadrotor aircraft[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(12): 7714-7726.
|
5 |
GUO H Z, CHEN M, JIANG Y H, et al. Distributed adaptive human-in-the-loop event-triggered formation control for QUAVs with quantized communication[J]. IEEE Transactions on Industrial Informatics, 2023, 19(6): 7572-7582.
|
6 |
ZHOU N, CHENG X D, SUN Z Q, et al. Fixed-time cooperative behavioral control for networked autonomous agents with second-order nonlinear dynamics[J]. IEEE Transactions on Cybernetics, 2021, 52(9): 9504-9518.
|
7 |
LIAO F, TEO R, WANG J L, et al. Distributed formation and reconfiguration control of VTOL UAVs[J]. IEEE Transactions on Control Systems Technology, 2017, 25(1): 270-277.
|
8 |
NGUYEN N P, OH H, MOON J. Continuous nonsingular terminal sliding-mode control with integral-type sliding surface for disturbed systems: Application to attitude control for quadrotor UAVs under external disturbances[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 5635-5660.
|
9 |
WEN G X, GE S S, TU F W, et al. Artificial potential-based adaptive H∞ synchronized tracking control for accommodation vessel[J]. IEEE Transactions on Industrial Electronics, 2017, 64(7): 5640-5647.
|
10 |
ASIGNACION A, SUZUKI S, NODA R, et al. Frequency-based wind gust estimation for quadrotors using a nonlinear disturbance observer[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 9224-9231.
|
11 |
SHAO S Y, CHEN M, HOU J, et al. Event-triggered-based discrete-time neural control for a quadrotor UAV using disturbance observer[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26(2): 689-699.
|
12 |
HUA H A, FANG Y C, ZHANG X T, et al. A novel robust observer-based nonlinear trajectory tracking control strategy for quadrotors[J]. IEEE Transactions on Control Systems Technology, 2021, 29(5): 1952-1963.
|
13 |
WANG F, GAO H M, WANG K, et al. Disturbance observer-based finite-time control design for a quadrotor UAV with external disturbance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(2): 834-847.
|
14 |
张豪, 王鹏, 汤国建, 等. 高超声速变外形飞行器事件触发有限时间控制[J]. 航空学报, 2023, 44(15): 528494.
|
|
ZHANG H, WANG P, TANG G J, et al. Event-triggered fast finite time control for hypersonic morphing vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528494 (in Chinese).
|
15 |
CHEN Y J, LIANG J C, WU Y N, et al. Adaptive sliding-mode disturbance observer-basedfinite-time control for unmanned aerial manlpulator with prescribed performance[J]. IEEE Transactions on Cybernetics,2023,53(5): 3263-3276.
|
16 |
WANG H, SHAN J J. Fully distributed event-triggered formation control for multiple quadrotors[J]. IEEE Transactions on Industrial Electronics, 2023, 70(12): 12566-12575.
|
17 |
SUN Z Y, LIU Q C, HUANG N, et al. Cooperative event-based rigid formation control[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(7): 4308-4320.
|
18 |
ZHANG Z R, WEN C Y, XING L T, et al. Adaptive event-triggered control of uncertain nonlinear systems using intermittent output only[J]. IEEE Transactions on Automatic Control, 2022, 67(8): 4218-4225.
|
19 |
WANG A Q, LIU L, QIU J B, et al. Event-triggered robust adaptive fuzzy control for a class of nonlinear systems[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(8): 1648-1658.
|
20 |
YI X L, LIU K, DIMAROGONAS D V, et al. Dynamic event-triggered and self-triggered control for multi-agent systems[J]. IEEE Transactions on Automatic Control, 2019, 64(8): 3300-3307.
|
21 |
陈浩岚, 王鹏, 汤国建. 变形飞行器输出误差受限与输入饱和控制方法[J]. 航空学报, 2023, 44(15): 528762.
|
|
CHEN H L, WANG P, TANG G J. Attitude control scheme for morphing vehicles with output error constraints and input saturation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528762 (in Chinese).
|
22 |
ZHU C J, CHEN J C, IWASAKI M, et al. Event-triggered deep learning control of quadrotors for trajectory tracking[J]. IEEE Transactions on Industrial Electronics, 2024, 71(3): 2726-2736.
|
23 |
YANG S, XIAN B. Energy-based nonlinear adaptive control design for the quadrotor UAV system with a suspended payload[J]. IEEE Transactions on Industrial Electronics, 2020, 67(3): 2054-2064.
|
24 |
CHEN M, GE S S, REN B B. Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints[J]. Automatica, 2011, 47(3): 452-465.
|
25 |
DONG X W, ZHOU Y, REN Z, et al. Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6): 5014-5024.
|
26 |
LI Y X, YANG G H. Adaptive neural control of pure-feedback nonlinear systems with event-triggered communications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(12): 6242-6251.
|
27 |
SHAN Q H, CHEN Z Z, LI T S, et al. Consensus of multi-agent systems with impulsive perturbations and time-varying delays by dynamic delay interval method[J]. Communications in Nonlinear Science and Numerical Simulation, 2019, 78: 104890.
|
28 |
LI X D, PENG D X, CAO J D. Lyapunov stability for impulsive systems via event-triggered impulsive control[J]. IEEE Transactions on Automatic Control, 2020, 65(11): 4908-4913.
|