1 |
PAHLE J, BERGER D, VENTI M, et al. An initial flight investigation of formation flight for drag reduction on the C-17 aircraft: AIAA-2012-4802[R]. Reston: AIAA, 2012.
|
2 |
BIENIAWSKI S R, ROSENZWEIG S, BLAKE W B. Summary of flight testing and results for the formation flight for aerodynamic benefit program: AIAA-2014-1467[R]. Reston: AIAA, 2014.
|
3 |
朱旭, 张逊逊, 尤谨语, 等. 基于信息一致性的无人机紧密编队集结控制[J]. 航空学报, 2015, 36(12): 3919-3929.
|
|
ZHU X, ZHANG X X, YOU J Y, et al. Swarm control of UAV close formation based on information consensus[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 3919-3929 (in Chinese).
|
4 |
ZHANG Q R, LIU H H T. Aerodynamics modeling and analysis of close formation flight[J]. Journal of Aircraft, 2017, 54(6): 2192-2204.
|
5 |
GU Y, SEANOR B, CAMPA G, et al. Design and flight testing evaluation of formation control laws[J]. IEEE Transactions on Control Systems Technology, 2006, 14(6): 1105-1112.
|
6 |
CHICHKA D F, SPEYER J L, FANTI C, et al. Peak-seeking control for drag reduction in formation flight[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(5): 1221-1230.
|
7 |
BRODECKI M, SUBBARAO K. Autonomous formation flight control system using in-flight sweet-spot estimation[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(6): 1083-1096.
|
8 |
ZHANG Q R, LIU H H T. Aerodynamic model-based robust adaptive control for close formation flight[J]. Aerospace Science and Technology, 2018, 79: 5-16.
|
9 |
ZHANG Q R, LIU H H T. UDE-based robust command filtered backstepping control for close formation flight[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11): 8818-8827.
|
10 |
王晶, 顾维博, 窦立亚. 基于Leader-Follower的多无人机编队轨迹跟踪设计[J]. 航空学报, 2020, 41(S1): 723758.
|
|
WANG J, GU W B, DOU L Y. Leader-Follower formation control of multiple UAVs with trajectory tracking design[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 723758 (in Chinese).
|
11 |
PACHTER M, D’AZZO J J, PROUD A W. Tight formation flight control[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(2): 246-254.
|
12 |
DOGAN A, VENKATARAMANAN S. Nonlinear control for reconfiguration of unmanned-aerial-vehicle formation[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(4): 667-678.
|
13 |
ALMEIDA F. Tight formation flight with feasible model predictive control: AIAA-2015-0602[R]. Reston: AIAA, 2015.
|
14 |
OLFATI-SABER R, FAX J A, MURRAY R M. Consensus and cooperation in networked multi-agent systems[J]. Proceedings of the IEEE, 2007, 95(1): 215-233.
|
15 |
OH K K, PARK M C, AHN H S. A survey of multi-agent formation control[J]. Automatica, 2015, 53: 424-440.
|
16 |
YANG R H, ZHANG H, FENG G, et al. Robust cooperative output regulation of multi-agent systems via adaptive event-triggered control[J]. Automatica, 2019, 102: 129-136.
|
17 |
DIMAROGONAS D V, LOIZOU S G, KYRIAKOPO⁃ ULOS K J, et al. A feedback stabilization and collision avoidance scheme for multiple independent non-point agents[J]. Automatica, 2006, 42(2): 229-243.
|
18 |
DIMAROGONAS D V, KYRIAKOPOULOS K J. On the rendezvous problem for multiple nonholonomic agents[J]. IEEE Transactions on Automatic Control, 2007, 52(5): 916-922.
|
19 |
SUN Z Y, ANDERSON B D O, DEGHAT M, et al. Rigid formation control of double-integrator systems[J]. International Journal of Control, 2017, 90(7): 1403-1419.
|
20 |
DEGHAT M, ANDERSON B D O, LIN Z Y. Combined flocking and distance-based shape control of multi-agent formations[J]. IEEE Transactions on Automatic Control, 2016, 61(7): 1824-1837.
|
21 |
LAWTON J R T, BEARD R W, YOUNG B J. A decentralized approach to formation maneuvers[J]. IEEE Transactions on Robotics and Automation, 2003, 19(6): 933-941.
|
22 |
BALCH T, ARKIN R C. Behavior-based formation control for multirobot teams[J]. IEEE Transactions on Robotics and Automation, 1998, 14(6): 926-939.
|
23 |
EGERSTEDT M, HU X, STOTSKY A. Control of mobile platforms using a virtual vehicle approach[J]. IEEE Transactions on Automatic Control, 2001, 46(11): 1777-1782.
|
24 |
DONG X W, ZHOU Y, REN Z, et al. Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6): 5014-5024.
|
25 |
REN W, BEARD R W. A decentralized scheme for spacecraft formation flying via the virtual structure approach[C]∥ Proceedings of the 2003 American Control Conference. Piscataway: IEEE Press, 2003: 1746-1751.
|
26 |
SADOWSKA A, VAN DEN BROEK T, HUIJBERTS H, et al. A virtual structure approach to formation control of unicycle mobile robots using mutual coupling[J]. International Journal of Control, 2011, 84(11): 1886-1902.
|
27 |
REZAEE H, ABDOLLAHI F. A decentralized cooperative control scheme with obstacle avoidance for a team of mobile robots[J]. IEEE Transactions on Industrial Electronics, 2014, 61(1): 347-354.
|
28 |
吴宇, 梁天骄. 基于改进一致性算法的无人机编队控制[J]. 航空学报, 2020, 41(9): 323848.
|
|
WU Y, LIANG T J. Improved consensus-based algorithm for unmanned aerial vehicle formation control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 323848 (in Chinese).
|
29 |
LAFFERRIERE G, WILLIAMS A, CAUGHMAN J, et al. Decentralized control of vehicle formations[J]. Systems & Control Letters, 2005, 54(9): 899-910.
|
30 |
WANG J N, XIN M. Integrated optimal formation control of multiple unmanned aerial vehicles[J]. IEEE Transactions on Control Systems Technology, 2013, 21(5): 1731-1744.
|
31 |
DONG X W, ZHOU Y, REN Z, et al. Time-varying formation control for unmanned aerial vehicles with switching interaction topologies[J]. Control Engineering Practice, 2016, 46: 26-36.
|
32 |
DIESTEL R. Graph theory[M]. 2nd ed. Berlin: Springer, 2000.
|
33 |
GODSIL C, ROYLE G. Algebraic graph theory[M]. New York: Springer New York, 2001.
|
34 |
MERRIS R. Laplacian matrices of graphs: A survey[J]. Linear Algebra and Its Applications, 1994, 197-198: 143-176.
|
35 |
段广仁. 高阶系统方法: I.全驱系统与参数化设计[J]. 自动化学报, 2020, 46(7): 1333-1345.
|
|
DUAN G R. High-order system approaches: I. Fully-actuated systems and parametric designs[J]. Acta Automatica Sinica, 2020, 46(7): 1333-1345 (in Chinese).
|
36 |
DUAN G R. High-order fully actuated system approaches: Part I. Models and basic procedure[J]. International Journal of Systems Science, 2021, 52(2): 422-435.
|
37 |
KERRIGAN E C. Predictive control for linear and hybrid systems bookshelf[J]. IEEE Control Systems Magazine, 2018, 38(2): 94-96.
|
38 |
GARCÍA C E, PRETT D M, MORARI M. Model predictive control: Theory and practice—A survey[J]. Automatica, 1989, 25(3): 335-348.
|
39 |
CHEN J Y, ZHAN W, TOMIZUKA M. Constrained iterative LQR for on-road autonomous driving motion planning[C]∥ 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). New York: ACM, 2017: 1-7.
|
40 |
GU D B, JASIM W. Iterative linear quadratic regulator control for quadrotors leader-follower formation flight[J]. International Journal of Modelling, Identification and Control, 2019, 31(2): 152.
|
41 |
KHALIL H K. Nonlinear Systems, 3rd ed. Prentice Hall, 2001.
|
42 |
ZHONG Q C, REES D. Control of uncertain LTI systems based on an uncertainty and disturbance estimator[J]. Journal of Dynamic Systems, Measurement, and Control, 2004, 126(4): 905-910.
|
43 |
ZHU B, ZHANG Q R, LIU H H T. A comparative study of robust attitude synchronization controllers for multiple 3-DOF helicopters[C]∥ 2015 American Control Conference (ACC). Piscataway: IEEE Press, 2015: 5960-5965.
|
44 |
ZHU B, ZHANG Q R, LIU H H T. Design and experimental evaluation of robust motion synchronization control for multivehicle system without velocity measurements[J]. International Journal of Robust and Nonlinear Control, 2018, 28(17): 5437-5463.
|
45 |
ZHU B, MENG C, HU G Q. Robust consensus tracking of double-integrator dynamics by bounded distributed control[J]. International Journal of Robust and Nonlinear Control, 2016, 26(7): 1489-1511.
|
46 |
ZHANG T, LI S Y, ZHU B, et al. TV-UDE: Time-varying uncertainty and disturbance estimator[J]. International Journal of Robust and Nonlinear Control, 2023, 33(16): 9579-9601.
|
47 |
ZHU B, LIU H H T, LI Z. Robust distributed attitude synchronization of multiple three-DOF experimental helicopters[J]. Control Engineering Practice, 2015, 36: 87-99.
|