航空学报 > 2023, Vol. 44 Issue (14): 628207-628207   doi: 10.7527/S1000-6893.2022.28207

航空发动机非定常流固热声耦合专栏

自适应湍流耦合建表燃烧模型的振荡燃烧数值模拟

陈涛1, 徐兴平2, 张宏达2, 韩省思1()   

  1. 1.南京航空航天大学 能源与动力学院,南京  210016
    2.中国航发沈阳发动机研究所,沈阳  110015
  • 收稿日期:2022-11-01 修回日期:2022-11-22 接受日期:2022-12-28 出版日期:2023-07-25 发布日期:2023-04-11
  • 通讯作者: 韩省思 E-mail:xshan@nuaa.edu.cn
  • 基金资助:
    国家自然科学基金(92041001);江苏省自然科学基金(BK20200069);国家科技重大专项(J2019-III-0015-0059)

Numerical simulation of combustion instability by SATES coupling with FGM combustion model

Tao CHEN1, Xingping XU2, Hongda ZHANG2, Xingsi HAN1()   

  1. 1.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing  210016,China
    2.AECC Shenyang Engine Research Institute,Shenyang  110015,China
  • Received:2022-11-01 Revised:2022-11-22 Accepted:2022-12-28 Online:2023-07-25 Published:2023-04-11
  • Contact: Xingsi HAN E-mail:xshan@nuaa.edu.cn
  • Supported by:
    National Natural Science Foundation of China(92041001);Jiangsu Provincial Natural Science Foundation(BK20200069);National Science and Technology Major Project(J2019-III-0015-0059)

摘要:

航空发动机及燃气轮机等动力装备燃烧室广泛采用的贫燃燃烧方式经常遇到破坏性的非定常热声耦合振荡燃烧问题。非定常振荡燃烧数值预测是一个长期的研究热点和难题。发展了针对振荡燃烧的耦合直接求解数值模拟方法,包括优化的动态模型参数的高精度自适应湍流模型(SATES),耦合可压缩的详细化学反应建表FGM燃烧模型。选取的3种湍流燃烧模型包括有限速率模型(W1)及火焰面密度封闭方法中的Zimont(W2)和Fureby(W3)2种褶皱因子模型。针对经典的LIMOUSINE燃烧室多个部分预混振荡燃烧工况开展了数值研究,发现自适应湍流模拟框架下的3种燃烧模型均准确预测到了振荡燃烧的振荡频率,与试验相比,误差<6.4%;对于振荡燃烧压力脉动振幅的预测结果,有限速率模型(W1)和Zimont(W2)模型结果显著大于试验值,误差>380%;Fureby(W3)模型结果与试验值吻合较好,误差<17.9%。表明振荡燃烧的数值预测对不同的湍流及湍流燃烧模型具有较高的敏感性。不同的工况结果表明,振荡燃烧存在完全振荡模态和过渡模态,完全振荡模态中数值预测的特征主频在燃烧室上下游多个位置趋于一致;过渡振荡模态中上下游不同位置预测的特征主频存在双峰,即双频模式。本文发展的数值模拟方法对振荡燃烧的预测具有较高的计算精度和可靠性。

关键词: 自适应湍流模型(SATES), 建表燃烧模型(FGM), 热声耦合振荡燃烧, 部分预混燃烧, 火焰面密度(FSD)模型

Abstract:

The lean-fuel combustion method is widely used in the combustion chamber of aircraft engines and gas turbines. However, this method often encounters destructive unsteady thermoacoustic combustion instability problems. Numerical prediction of unsteady combustion instability is a long-term research hotspot and challenging problem. In this study, a coupled direct numerical simulation method for combustion instability is developed, coupling a high-fidelity Self-Adaptive Turbulence Eddy Simulation (SATES) method with optimized dynamic model parameters and a compressible tabulated FGM combustion model with detailed chemical reaction. Three turbulent combustion models are selected including the finite rate model (W1) and two Flame Surface Density (FSD) models of Zimont (W2) and Fureby (W3). Numerical studies were carried out for the classical partially-premixed LIMOUSINE combustion chamber with combustion instability. It is found that the three combustion models under the SATES framework accurately predict the instability frequency of oscillating combustion, and the difference from the experimental data is small, which less than 6.4%. As to the prediction results of the instability amplitude of oscillating pressure, the finite rate model (W1) and Zimont (W2) model results are significantly larger than the experimental data, with the difference larger than 380%, and the Fureby (W3) model results are in good agreement with the experiments with the difference less than 17.9%. It is shown that the numerical prediction of combustion instability has high sensitivity to different turbulence and turbulent combustion models. The results from different test cases show that there are complete instability modes and transition modes in the combustion instability. The dominant frequency predicted by the numerical simulations in the complete instability mode tends to be consistent at multiple positions upstream and downstream of the combustion chamber. There are bimodal peaks in the predicted peak frequencies at different positions upstream and downstream in the transition instability mode, that is, dual-frequency mode. These results demonstrate that the numerical simulation method developed in the present study has high computational accuracy and reliability for the prediction of combustion instability.

Key words: Self-Adaptive Turbulence Eddy Simulation (SATES), Flame Generated Manifolds (FGM), thermoacoustic combustion instability, partially premixed flame, Flame Surface Density (FSD) models

中图分类号: