[1] 杨武兵,沈清,朱德华,等.高超声速边界层转捩研究现状与趋势[J].空气动力学学报,2018,36(2):183-195. YANG W B, SHEN Q, ZHU D H, et al. Tendency and current status of hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica, 2018, 36(2):183-195(in Chinese). [2] KIMMEL R L, KLEIN M A, SCHWOERKE S N. Three-dimensional hypersonic laminar boundary-layer computations for transition experiment design[J]. Journal of Spacecraft and Rockets, 1997, 34(4):409-415. [3] KIMMEL R L, POGGIE J, SCHWOERKE S N. Laminar-turbulent transition in a Mach 8 elliptic cone flow[J]. AIAA Journal, 1999, 37(9):1080-1087. [4] POGGIE J, KIMMEL R L, SCHWOERKE S N. Traveling instability waves in a Mach 8 flow over an elliptic cone[J]. AIAA Journal, 2000, 38(2):251-258. [5] HOLDEN M, WADHAMS T, MACLEAN M, et al. Reviews of studies of boundary layer transition in hypersonic flows over axisymmetric and elliptic cones conducted in the CUBRC shock tunnels[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2009. [6] JULIANO T, SCHNEIDER S. Instability and transition on the HIFiRE-5 in a Mach 6 quiet tunnel[C]//40th Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2010. [7] JULIANO T J, BORG M P, SCHNEIDER S P. Quiet tunnel measurements of HIFiRE-5 boundary-layer transition[J]. AIAA Journal, 2015, 53(4):832-846. [8] BORG M, KIMMEL R, STANFIELD S. Crossflow instability for HIFiRE-5 in a quiet hypersonic wind tunnel[C]//42nd AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2012. [9] BORG M P, KIMMEL R L, HOFFERTH J W, et al. Freestream effects on boundary layer disturbances for HIFiRE-5[C]//53rd AIAA Aerospace Sciences Meeting. Reston:AIAA, 2015. [10] CHOUDHARI M, CHANG C L, JENTINK T, et al. Transition analysis for the HIFiRE-5 vehicle[C]//39th AIAA Fluid Dynamics Conference. Reston:AIAA, 2009. [11] GOSSE R, KIMMEL R, JOHNSON H. CFD study of the HIFiRE-5 flight experiment[C]//40th Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2010. [12] LI F, CHOUDHARI M, CHANG C L, et al. Stability analysis for HIFiRE experiments[C]//42nd AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2012. [13] JULIANO T J, POGGIE J, PORTER K, et al. HIFiRE-5b heat flux and boundary-layer transition[C]//47th AIAA Fluid Dynamics Conference. Reston:AIAA, 2017. [14] KIMMEL R L, ADAMCZAK D W, HARTLEY D, et al. Hypersonic international flight research experimentation-5b flight overview[J]. Journal of Spacecraft and Rockets, 2018, 55(6):1303-1314. [15] TUFTS M W, BORG M P, GOSSE R C, et al. Collaboration between flight test, ground test, and computation on HIFiRE-5[C]//2018 Applied Aerodynamics Conference. Reston:AIAA, 2018. [16] DINZL D J, CANDLER G V. Direct numerical simulation of crossflow instability excited by microscale roughness on HIFiRE-5[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016. [17] TUFTS M W, BORG M P, BISEK N J, et al. High-fidelity simulation of HIFiRE-5 boundary-layer transition[C]//AIAA Aviation 2020 Forum. Reston:AIAA, 2020. [18] LANGTRY R, MENTER F. Transition modeling for general CFD applications in aeronautics[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2005. [19] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906. [20] WANG L, FU S. Modelling flow transition in a hypersonic boundary layer with Reynolds-averaged Navier-Stokes approach[J]. Science in China Series G:Physics, Mechanics and Astronomy, 2009, 52(5):768-774. [21] WANG L, FU S. Development of an intermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition[J]. Flow, Turbulence and Combustion, 2011, 87(1):165-187. [22] CHO J R, CHUNG M K. A k-ε-γ equation turbulence model[J]. Journal of Fluid Mechanics, 1992, 237:301-322. [23] KOHAMA Y, DAVIS S S. A new parameter for predicting crossflow instability[J]. JSME International Journal Series B, 1993, 36(1):80-85. [24] REED H L, HAYNES T S. Transition correlation in three-dimensional boundary layers[J]. AIAA Jornal, 1994, 32(5):923-929. [25] MULLER C, HERBST F. Modeling of crossflow-induced transition based on local variables[C]//6th European Conference on Computational Fluid Dynamic, 2014. [26] GRABE C, KRUMBEIN A. Extension of the γ-Reθtmodel for prediction of crossflow transition[C]//52nd Aerospace Sciences Meeting. Reston:AIAA, 2014. [27] MEDIDA S, BAEDER J. A new crossflow transition onset criterion for RANS turbulence models[C]//21st AIAA Computational Fluid Dynamics Conference. Reston:AIAA, 2013. [28] LANGTRY R B, SENGUPTA K, YEH D T, et al. Extending the γ-Reθt local correlation based transition model for crossflow effects:AIAA-2015-2474[R]. Reston:AIAA, 2015. [29] 周玲,阎超,郝子辉,等.转捩模式与转捩准则预测高超声速边界层流动[J].航空学报, 2016, 37(4):1092-1102. ZHOU L, YAN C, HAO Z H, et al. Transition model and transition criteria for hypersonic boundary layer flow[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1092-1102(in Chinese). [30] ZHANG Y F, ZHANG Y R, CHEN J Q, et al. Numerical simulations of hypersonic boundary layer transition based on the flow solver chant 2.0[C]//21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston:AIAA, 2017. [31] KRAUSE M, BEHR M, BALLMANN J. Modeling of transition effects in hypersonic intake flows using a correlation-based intermittency model[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2008. [32] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605. [33] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2):357-372. [34] ZHANG H X, ZHUANG F G. NND schemes and their applications to numerical simulation of two-and three-dimensional flows[J]. Advances in Applied Mechanics, 1991, 29:193-256. [35] YOON S, JAMESON A. Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1988, 26(9):1025-1026. [36] 尚庆,陈林,李雪,等.高超声速钝双楔绕流流动转捩与分离流动的壁温影响[J].航空学报, 2014, 35(11):2958-2969. SHANG Q, CHEN L, LI X, et al. Wall temperature effect on transition flow and separated flow in hypersonic flow around a blunt double wedge[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):2958-2969(in Chinese). [37] 朱志斌,尚庆,潘宏禄,等.高超声速双椭球气动热环境预测[J].兵器装备工程学报, 2019, 40(1):111-117. ZHU Z B, SHANG Q, PAN H L, et al. Prediction of aero-heating environment of the hypersonic double ellipsoid flow[J]. Journal of Ordnance Equipment Engineering, 2019, 40(1):111-117(in Chinese). |