[1] PIQUÉ A, AUYEUNG RAYMOND C Y, KIM H, et al. Laser 3D micro-manufacturing[J]. Journal of Physics D-Applied Physics, 2016, 49(22):223001. [2] 朱忠良,赵凯,郭立杰,等. 大型金属构件增材制造技术在航空航天制造中的应用及其发展趋势[J]. 电焊机,2020,50(1):1-14. ZHU Z L, ZHAO K, GUO L J, et al. Application and development trend of additive manufacturing technology of large-scale metal component in aerospace manufacturing[J]. Electric Welding Machine, 2020, 50(1):1-14(in Chinese). [3] 任慧娇, 周冠男, 从保强, 等. 增材制造技术在航空航天金属构件领域的发展及应用[J]. 航空制造技术, 2020, 63(10):72-77. REN H J, ZHOU G N, CONG B Q, et al. Development and application of metal additive manufacturing in aerospace field[J]. Aeronautical Manufacturing Technology, 2020, 63(10):72-77(in Chinese). [4] 安国进. 金属增材制造技术在航空航天领域的应用与展望[J]. 现代机械, 2019(3):39-43. AN G J. Application and prospect of metal additive manufacturing technology in aerospace[J]. Modern Machinery, 2019(3):39-43(in Chinese). [5] TEPYLO N, HUANG X, PATNAIK P C. Laser-based additive manufacturing technologies for aerospace applications[J]. Advanced Engineering Materials, 2019, 21(11):1900617. [6] 赵德陈, 林峰. 金属粉末床熔融工艺在线监测技术综述[J]. 中国机械工程, 2018, 29(17):2100-2110. ZHAO D C,LIN F. Review of on-line monitoring techniques in metal powder bed fusion processes[J]. China Mechanical Engineering, 2018, 29(17):2100-2110(in Chinese). [7] LIAN Y, GAN Z, YU C, et al. A cellular automaton finite volume method for microstructure evolution during additive manufacturing[J]. Materials & Design, 2019, 169:107672. [8] RODGERS T M, MADISON J D, TIKARE V. Simulation of metal additive manufacturing microstructures using kinetic Monte Carlo[J]. Computational Materials Science, 2017, 135:78-89. [9] 赵剑峰,马智勇,谢德巧,等. 金属增材制造技术[J]. 南京航空航天大学学报, 2014, 46(5):675-683. ZHAO J F,MA Z Y,XIE D Q,et al. Metal additive manufacturing technique[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014,46(5):675-683(in Chinese). [10] 万志远, 陈银平. 金属增材制造技术的研究概况[J]. 模具技术, 2020(1):59-63. WAN Z Y, CHEN Y P. A surrey on the metal additive manufacturing technology[J]. Die and Mould Technology, 2020(1):59-63(in Chinese). [11] TUMBLESTON J R, SHIRVANYANTS D, ERMOSHKIN N, et al. Continuous liquid interface production of 3D objects[J]. Science, 2015, 347(6228):1349-1352. [12] ALI H, GHADBEIGI H, HOSSEINZADEH F, et al. Effect of pre-emptive in situ parameter modification on residual stress distributions within selective laser-melted Ti6Al4V components[J]. International Journal of Advanced Manufacturing Technology, 2019, 103(9-12):4467-4479. [13] BIEGLER M, MARKO A, GRAF B, et al. Finite element analysis of in-situ distortion and bulging for an arbitrarily curved additive manufacturing directed energy deposition geometry[J]. Additive Manufacturing, 2018, 24:264-272. [14] CHEN Z H, GUO X X, SHI J. Hardness prediction and verification based on key temperature features during the directed energy deposition process[J/OL]. International Journal of Precision Engineering and Manufacturing-Green Technology,(2020-03-19)[2020-06-24].https://doi.org/10.1007/s40684-020-00208-4. [15] KING W E, ANDERSON A T, FERENCZ R M, et al. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges[J]. Applied Physics Reviews, 2015, 2(4):041304. [16] 李礼, 刘晓辉, 戴煜, 等. 粉末床增材制造的有限元仿真在航空零部件上的应用技术研究[J]. 新材料产业, 2018(6):55-58. LI L, LIU X H, DAI Y, et al. Research on application technology of finite element simulation of powder bed additive manufacturing in aviation parts[J]. Advanced Materials Industry, 2018(6):55-58(in Chinese). [17] TSENG C C, LI C J. Numerical investigation of interfacial dynamics for the melt pool of Ti-6Al-4V powders under a selective laser[J]. International Journal of Heat & Mass Transfer, 2019, 134:906-919. [18] FRANCOISA M M, SUN A, KING W E, et al. Modeling of additive manufacturing processes for metals:Challenges and opportunities[J]. Current Opinion in Solid State & Materials Science, 2017, 21:198-206. [19] ZHU G, ZHANG A, LI D, et al. Numerical simulation of thermal behavior during laser direct metal deposition[J]. The International Journal of Advanced Manufacturing Technology, 2011, 55:945-954. [20] REN K, CHEW Y, FUH J Y H, et al. Thermo-mechanical analyses for optimized path planning in laser aided additive manufacturing processes[J]. Materials & Design, 2019, 162:80-93. [21] 谭树杰, 李多生, 叶寅, 等. 激光熔化沉积Inconel718合金温度场及形貌的数值模拟[J]. 中国有色金属学报, 2018, 28(11):2296-2304. TAN S J, LI D S, YE Y, et al. Temperature field and morphology simulation of laser melting deposited Inconel718 alloy[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(11):2296-2304(in Chinese). [22] HUANG W B, ZHANG Y M. Finite element simulation of thermal behavior in single-track multiple-layers thin wall without-support during selective laser melting[J]. Journal of Manufacturing Processes, 2019, 42:139-148. [23] GU D D, HE B B. Finite element simulation and experimental investigation of residual stresses in selective laser melted Ti-Ni shape memory alloy[J]. Computational Materials Science, 2016, 117:221-232. [24] LIU P W, WANG Z, XIAO Y H, et al. Integration of phase-field model and crystal plasticity for the prediction of process-structure-property relation of additively manufactured metallic materials[J]. International Journal of Plasticity, 2020, 128:102670. [25] ZHAN X H, LIN X, GAO Z N, et al. Modeling and simulation of the columnar-to-equiaxed transition during laser melting deposition of Invar alloy[J]. Journal of Alloys & Compounds, 2018, 755:123-134. [26] TAN P F, SHEN F, LI B, et al. A thermo-metallurgical-mechanical model for selective laser melting of Ti6Al4V[J]. Materials & Design, 2019, 168:107642. [27] KÖRNER C, BAUEREIβ A, ATTAR E. Fundamental consolidation mechanisms during selective beam melting of powders[J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21(8):085011. [28] XIAO W J, LI S M, WANG C S, et al. Multi-scale simulation of dendrite growth for direct energy deposition of nickel-based superalloys[J]. Materials & Design, 2019, 164:107553. [29] 冯一琦, 谢国印, 张璧, 等. 激光功率与底面状态对选区激光熔化球化的影响[J]. 航空学报, 2019, 40(12):423089. FENG Y Q, XIE G Y, ZHANG B, et al. Influence of laser power and surface condition on balling behavior in selective laser melting[J]. Acta Aeronautica et Astro nautica Sinica, 2019, 40(12):423089(in Chinese). [30] GAN Z T, LIU H, LI S X, et al. Modeling of thermal behavior and mass transport in multi-layer laser additive manufacturing of Ni-based alloy on cast iron[J]. International Journal of Heat & Mass Transfer, 2017, 111:709-722. [31] XIA M J, GU D D, YU G Q, et al. Porosity evolution and its thermodynamic mechanism of randomly packed powder-bed during selective laser melting of Inconel 718 alloy[J]. International Journal of Machine Tools and Manufacture, 2017, 116:96-106. [32] YUAN P P, GU D D. Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites:simulation and experiments[J]. Journal of Physics D-Applied Physics, 2015, 48(3):035303. [33] DAI D H, GU D D. Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg powder[J]. International Journal of Machine Tools & Manufacture, 2015, 88:95-107. [34] WANG S H, ZHU L D, FUH JERRY Y H, et al. Multi-physics modeling and Gaussian process regression analysis of cladding track geometry for direct energy deposition[J]. Optics and Lasers in Engineering, 2020, 127:105950. [35] LE K Q, TANG C, WONG C H. On the study of keyhole-mode melting in selective laser melting process[J]. International Journal of Thermal Sciences, 2019, 145:105992. [36] CHEN Z H, ZONG X H, SHI J, et al. Online monitoring based on temperature field features and prediction model for selective laser sintering process[J]. Applied Sciences, 2018, 8(12):2383-2398. [37] ZHANG Z D, HUANG Y Z, KASINATHAN A R, et al. 3-Dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat sources based on varied thermal conductivity and absorptivity[J]. Optics & Laser Technology, 2019, 109:297-312. [38] KUMAR M A, AKASH A, ARVIND K, et al. Identification of a suitable volumetric heat source for modelling of selective laser melting of Ti6Al4V powder using numerical and experimental validation approach[J]. International Journal of Advanced Manufacturing Technology, 2018, 99:2257-2270. [39] LI J F, LI L, STOTT F H. Comparison of volumetric and surface heating sources in the modeling of laser melting of ceramic materials[J]. International Journal of Heat and Mass Transfer, 2004, 47(6-7):1159-1174. [40] LIU S W, ZHU H H, PENG G Y. Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis[J]. Materials & Design, 2018, 142:319-328. [41] LIU B Q, FANG G, LEI L P, et al. A new ray tracing heat source model for mesoscale CFD simulation of selective laser melting (SLM)[J].Applied Mathematical Modelling, 2020, 79:506-520. [42] YANG Y, GU D D, DAI D H, et al. Laser energy absorption behavior of powder particles using ray tracing method during selective laser melting additive manufacturing of aluminum alloy[J]. Materials & Design, 2018, 143:12-19. [43] ZHANG Y,ZHANG J. Modeling of solidification microstructure evolution in laser powder bed fusion fabricated 316L stainless steel using combined computational fluid dynamics and cellular automata[J]. Additive Manufacturing, 2019, 28:750-765. [44] TRAPP J, RUBENCHIK A M, GUSS G, et al. In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing[J]. Applied Materials Today, 2017, 9:341-349. [45] MOGES T, AMETA G, WITHERELL P. A review of model inaccuracy and parameter uncertainty in laser powder bed fusion models and simulations[J]. Journal of Manufacturing Science and Engineering, 2019, 141(4):040801. [46] CHEN H, WEI Q S, WEN S F, et al. Flow behavior of powder particles in layering process of selective laser melting:Numerical modeling and experimental verification based on discrete element method[J]. International Journal of Machine Tools and Manufacture, 2017, 123:146-159. [47] KOVALEV O B, ZAITSEV A V, NOVICHENKO D, et al. Theoretical and experimental investigation of gas flows, powder transport and heating in coaxial laser direct metal deposition (DMD) process[J]. Journal of Thermal Spray Technology, 2011, 20(3):465-478. [48] PINKERTON, ANDREW J. Advances in the modeling of laser direct metal deposition[J]. Journal of Laser Applications, 2015, 27(S1):S15001. [49] RAI A, MARKL M, KRNER C. A coupled Cellular Automaton-Lattice Boltzmann model for grain structure simulation during additive manufacturing[J]. Computational Materials Science, 2016, 124:37-48. [50] GU H, WEI C, LI L, et al. Multi-physics modelling of molten pool development and track formation in multi-track, multi-layer and multi-material selective laser melting[J]. International Journal of Heat and Mass Transfer, 2020, 151:119458. [51] LEE W H, ZHANG Y, ZHANG J. Discrete element modeling of powder flow and laser heating in direct metal laser sintering process[J]. Powder Technology, 2017, 315:300-308. [52] FOUDA Y M, BAYLY A E. A DEM study of powder spreading in additive layer manufacturing[J]. Granular Matter, 2020, 22:10. [53] MEAKIN P, JULLIEN R. Restructuring effects in the rain model for random deposition[J]. Journal de Physique, 1987, 48(10):1651-1662. [54] MARKL M, KOERNER C. Multiscale modeling of powder bed-based additive manufacturing[J]. Annual Review of Materials Research, 2016, 46:93-123. [55] SAXENA S, SHARMA R, KUMAR A. A microscale study of thermal field and stresses during processing of ti6al4v powder layer by selective laser melting[J]. Lasers in Manufacturing and Materials Processing, 2018, 5(4):335-365. [56] 杜洋, 乔凤斌, 郭立杰, 等. AlSi10Mg粉末激光选区熔化残余应力场数值模拟[J]. 电焊机, 2019, 49(1):103-119. DU Y, QIAO F B, GUO L J, et al. Numerical simulation of selective laser melting residual stress field of AlSi10Mg powder, electric welding machine[J]. Electric Welding Machine, 2019, 49(1):113-119(in Chinese). [57] LI Y L, ZHOU K, TAN P F, et al. Modeling temperature and residual stress fields in selective laser melting[J]. International Journal of Mechanical Sciences, 2018, 136:24-35. [58] MUGWAGWA L, DIMITROV D, MATOPE S, et al. Evaluation of the impact of scanning strategies on residual stresses in selective laser melting[J]. International Journal of Advanced Manufacturing Technology, 2019, 102(5-8):2441-2450. [59] ZOU S, XIAO H B, YE F P, et al. Numerical analysis of the effect of the scan strategy on the residual stress in the multi-laser selective laser melting[J]. Results in Physics, 2020, 16:103005 [60] LU X F, LIN X, MICHELE C, et al. In situ measurements and thermo-mechanical simulation of Ti-6Al-4V laser solid forming processes[J]. International Journal of Mechanical Sciences, 2019, 153-154:119-130. [61] MARQUES B M, ANDRADE C M, NETO D M, et al. Numerical analysis of residual stresses in parts produced by selective laser melting process[J]. Procedia Manufacturing, 2020, 47:1170. [62] PARRY L, ASHCROFT I A, WILDMAN R D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation[J]. Additive Manufacturing, 2016, 12:1-15. [63] 文舒, 董安平, 陆燕玲, 等. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟[J]. 金属学报, 2018, 54(3):394-402. WEN S, DONG A P, LU Y L, et al. Finite element simulation of the temperature field and residual stress in gh536 superalloy treated by selective laser melting[J]. Acta Metallurgica Sinica, 2018, 54(3):394-402(in Chinese). [64] LINDGREN L E, LUNDBAECK A, FISK M. Thermo-mechanics and microstructure evolution in manufacturing simulations[J]. Journal of Thermal Stresses, 2013, 36(4-6):564-588. [65] FANG Z C, WUZ L, HUANG C G, et al. Review on residual stress in selective laser melting additive manufacturing of alloy parts[J]. Optics & Laser Technology, 2020, 129:106283. [66] MIRKOOHI E, SIEVERS D E, GARMESTANI H, et al. Thermo-mechanical modeling of thermal stress in metal additive manufacturing considering elastoplastic hardening[J]. CIRP Journal of Manufacturing Science and Technology, 2020, 28:52-67. [67] ZINOVIEVA O, ZINOVIEV A, PLOSHIKHIN V. Three-dimensional modeling of the microstructure evolution during metal additive manufacturing[J]. Computational Materials Science, 2018, 141:207-220. [68] ZHANG Z, TAN Z J, YAO X X, et al. Numerical methods for microstructural evolutions in laser additive manufacturing[J]. Computers & Mathematics with Applications, 2019, 78(7):2296-2307. [69] WEI H L, KNAPP G L, MUKHERJEE T, et al. Three-dimensional grain growth during multi-layer printing of a nickel-based alloy Inconel 718[J]. Additive Manufacturing, 2019, 25:448-459. [70] KUAN T J H, LEONG S S, YEE Y W. Microstructure modelling for metallic additive manufacturing:a review[J]. Virtual and Physical Prototyping, 2020, 15(1):87-105. [71] ZHANG J W,LIOU F,SEUFZER W,et al. A coupled finite element cellular automaton model to predict thermal history and grain morphology of Ti-6Al-4V during direct metal deposition (DMD)[J]. Additive Manufacturing, 2016, 11:32-39. [72] ZINOVIEV A, ZINOVIEVA O, PLOSHIKHIN V, et al. Evolution of grain structure during laser additive manufacturing. Simulation by a cellular automata method[J]. Materials & Design, 2016, 106:321-329 [73] ZHANG Y, XIAO X H, ZHANG J. Kinetic Monte Carlo simulation of sintering behavior of additively manufactured stainless steel powder particles using reconstructed microstructures from synchrotron X-ray microtomography[J]. Results in Physics, 2019, 13:102336. [74] ZHANG J, WU L M, ZHANG Y, et al. Phase field simulation of dendritic microstructure in additively manufactured titanium alloy[J]. Metal Powder Report, 2019, 74(1):20-24. [75] KHAIRALLAH S A, ANDERSON A. Mesoscopic simulation model of selective laser melting of stainless steel powder[J]. Journal of Materials Processing Technology, 2014, 214(11):2627-2636. [76] YAN W T, GE W J, QIAN Y, et al. Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting[J]. Acta Materialia, 2017, 134:324-333. [77] QI X B, CHEN G F, LI Y, et al. Applying neural-network-based machine learning to additive manufacturing:current applications, challenges, and future perspectives[J]. Engineering, 2019, 5(4):721-729. [78] QIAN Y, YAN W T, LIN F. Data mining for mesoscopic simulation of electron beam selective melting[J]. Engineering, 2019, 5(4):746-812. [79] GAN Z T, LI H Y, WOLFF S J, et al. Data-driven microstructure and microhardness design in additive manufacturing using a self-organizing map[J]. Engineering, 2019, 5(4):730-735. [80] ROY M, WODO O. Data-driven modeling of thermal history in additive manufacturing[J]. Additive Manufacturing, 2020, 32:101017. [81] KOEPPE A, PADILLA C A H, VOSHAGE M, et al. Efficient numerical modeling of 3D-printed lattice-cell structures using neural networks[J]. Manufacturing Letters, 2018, 15:147-150. |