[1] 关桥, 邵亦陈. 航空特种焊接/连接技术体系的形成和发展:中航工业北京航空制造工程研究所建所55周年纪念[J]. 航空制造技术, 2012, 55(13):34-39. GUAN Q, SHAO Y C. Formation and development of the system of non-conventional welding/joining techniques for aviation industry[J]. Aeronautical Manufacturing Technology, 2012, 55(13):34-39(in Chinese). [2] 陈玮, 李志强. 航空钛合金增材制造的机遇和挑战[J]. 航空制造技术, 2018, 61(10):30-37. CHEN W, LI Z Q. Additive manufacturing of aerospace titanium alloys:opportunities and challenges[J]. Aeronautical Manufacturing Technology, 2018, 61(10):30-37(in Chinese). [3] 李晓红, 熊华平, 张学军. 先进航空材料焊接技术[M]. 北京:国防工业出版社, 2012. LI X H, XIONG H P, ZHANG X J. Joining technologies of advanced aeronautical materials[M]. Beijing:National Defense Industry Press, 2012(in Chinese). [4] 张晓兵. 激光加工小孔技术[M]. 北京:国防工业出版社, 2020. ZHANG X B. Laser drilling technology[M]. Beijing:National Defense Industry Press, 2020(in Chinese). [5] 中国机械工程学会焊接学会. 中国焊接:1994-2016[M]. 北京:机械工业出版社, 2017. Chinese Mechanical Engineering Society, Welding Society. China welding:1994-2016[M]. Beijing:China Machine Press, 2017(in Chinese). [6] 陈彦斌,徐庆鸿,苏彦东. 激光-同轴电弧复合焊接热源焊接[J]. 焊接学报, 1995, 16(4):239-243. CHEN Y B, XU Q H, SU Y D. Welding application of combined laser-coaxial arc heat source[J]. Transactions of the China Welding Institution, 1995, 16(4):239-243(in Chinese).. [7] 左铁钏, 陈虹, 张冬云, 等. 激光制造技术在航空领域中的应用[J]. 航空制造技术, 2008, 51(21):32-34. ZUO T C, CHEN H, ZHANG D Y, et al. Application of laser manufacturing technology in aviation industry[J]. Aeronautical Manufacturing Technology, 2008, 51(21):32-34(in Chinese). [8] 左铁钏. 21世纪的先进制造:激光技术与工程[M]. 北京:科学出版社, 2007. ZUO T C. Advanced manufacturing in the 21 st century:laser technology and engineering[M]. Beijing:Science Press, 2007(in Chinese). [9] MUELLER N G, WEBER R, WEBER H P. Output beam characteristics of high-power continuous-wave diode laser bars[J]. Optical Engineering, 1995, 34(8):2384-2389. [10] MENDEZ P F, EAGAR T W. Welding processes for aeronautics[J]. Advanced Materials and Processes, 2001, 159(5):39-43. [11] 姚伟, 巩水利, 陈俐. 钛合金激光穿透焊的焊缝成形(I)[J]. 焊接学报, 2004, 25(4):119-122, 134. YAO W, GONG S L, CHEN L. Research on weld shaping for laser fully penetration welding titanium alloy(Ⅰ)[J]. Transactions of the China Welding Institution, 2004, 25(4):119-122, 134(in Chinese). [12] 苏彦东. 激光深熔焊接热效率的研究[D]. 北京:北京航空航天大学, 2000. SU Y D. Research on thermal efficiency of laser deep penetration welding[D]. Beijing:Beijing University of Aeronautics and Astronautics, 2000(in Chinese). [13] 巩水利. 高能束流加工技术在航空发动机领域的应用[J]. 航空制造技术, 2013, 56(9):34-37. GONG S L. Application of high power beam processing technology in aeroengine[J]. Aeronautical Manufacturing Technology, 2013, 56(9):34-37(in Chinese). [14] 陈俐, 董春林, 吕高尚, 等. YAG/MAG激光电弧复合焊工艺研究[J]. 焊接技术, 2004, 33(4):21-23, 35. CHEN L, DONG C L, LV G S, et al. Research on YAG laser/MAG arc hybrid welding[J]. Welding Technology, 2004, 33(4):21-23, 35(in Chinese). [15] SCHULTZ H. 电子束焊接技术[M]. 周山山,译. 武汉:华中科技大学出版社, 2020. SCHULTZ H. Electron beam welding[M]. ZHOU S S, translated. Wuhan:Huazhong University of Science and Technology Press, 2020(in Chinese). [16] STEIGERWALD K H, SAYEGH G, POWERS D. An international history of electron beam welding[M]. Hanau:Heraeus GmbH and Leybold AG, 2007. [17] ZHANG W, XIAO P, CHEN Z. Temperature field simulation of pulsed electron beam welding on 304 stainless steel[J]. Rare Metal Materials and Engineering, 2013, 42(2):033-037. [18] 齐铂金, 范霁康, 刘方军. 脉冲束流电子束焊接技术综述[J]. 航空制造技术, 2015, 58(11):26-30. QI B J, FAN J K, LIU F J. An overview of pulsed electron beam welding technology[J]. Aeronautical Manufacturing Technology, 2015, 58(11):26-30(in Chinese). [19] ELMER J, VAJA J, CARLTON H. The effect of reduced pressure on laser keyhole weld porosity and weld geometry in commercially pure titanium and nickel[J]. Welding Journal, 2016, 95(11):419-430. [20] 孙文君, 王善林, 陈玉华, 等. 钛合金先进焊接技术研究现状[J]. 航空制造技术, 2019, 62(18):63-72. SUN W J, WANG S L, CHEN Y H, et al. Development of advanced welding technologies for titanium alloys[J]. Aeronautical Manufacturing Technology, 2019, 62(18):63-72(in Chinese). [21] 王华明. 高性能金属构件增材制造技术开启国防制造新篇章[J]. 国防制造技术, 2013(3):5-7. WANG H M. Additive manufacturing of high-performance metallic structures opens a new page of manufacturing for the national defense industry[J]. Defense Manufacturing Technology, 2013(3):5-7(in Chinese). [22] 林鑫, 黄卫东. 应用于航空领域的金属高性能增材制造技术[J]. 中国材料进展, 2015, 34(9):684-688, 658. LIN X, HUANG W D. High performance metal additive manufacturing technology applied in aviation field[J]. Materials China, 2015, 34(9):684-688, 658(in Chinese). [23] 宋文清, 李晓光, 曲伸, 等. 金属增材制造技术在航空发动机中的应用展望[J]. 金属加工(热加工), 2016(2):44-46. SONG W Q, LI X G, QU S, et al. Application of metal additive manufacturing technology in aero-engine[J]. Machinist Metal Forming, 2016(2):44-46(in Chinese). [24] 朱忠良, 赵凯, 郭立杰, 等. 大型金属构件增材制造技术在航空航天制造中的应用及其发展趋势[J]. 电焊机, 2020, 50(1):1-14, 124. ZHU Z L, ZHAO K, GUO L J, et al. Application and development trend of additive manufacturing technology of large-scale metal component in aerospace manufacturing[J]. Electric Welding Machine, 2020, 50(1):1-14, 124(in Chinese). [25] 陈玮, 杨洋, 刘亮亮, 等. 电子束增材制造γ-TiAl显微组织调控与拉伸性能研究[J]. 航空制造技术, 2017, 60(1/2):37-41. CHEN W, YANG Y, LIU L L, et al. Microstructure control and tensile properties of EBM γ-TiAl[J]. Aeronautical Manufacturing Technology, 2017, 60(1/2):37-41(in Chinese). [26] ARCELLA F G, FROES F H. Producing titanium aerospace components from powder using laser forming[J]. JOM, 2000, 52(5):28-30. [27] ABBOTT D. AeroMet implementing novel Ti process[J]. Metal Powder Report, 1998, 53(2):24-26. [28] KOBRYN P A, SEMIATIN S L. The laser additive manufacture of Ti-6Al-4V[J]. JOM, 2001, 53(9):40-42. [29] 王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报, 2014, 35(10):2690-2698. WANG H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2690-2698(in Chinese). [30] MARKL M, KÖRNER C. Multiscale modeling of powder bed-based additive manufacturing[J]. Annual Review of Materials Research, 2016, 46:93-123. [31] THIJS L, VERHAEGHE F, CRAEGHS T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 2010, 58(9):3303-3312. [32] ALCISTO J, ENRIQUEZ A, GARCIA H, et al. Tensile properties and microstructures of laser-formed Ti-6Al-4V[J]. Journal of Materials Engineering and Performance, 2011, 20(2):203-212. [33] LU Y, TANG H B, FANG Y L, et al. Microstructure evolution of sub-critical annealed laser deposited Ti-6Al-4V alloy[J]. Materials & Design, 2012, 37:56-63. [34] CARROLL B E, PALMER T A, BEESE A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing[J]. Acta Materialia, 2015, 87:309-320. [35] GÄUMANN M, BEZENÇON C, CANALIS P, et al. Single-crystal laser deposition of superalloys:processing-microstructure maps[J]. Acta Materialia, 2001, 49(6):1051-1062. [36] LIU C M, TIAN X J, WANG H M, et al. Obtaining bimodal microstructure in laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy[J]. Materials Science and Engineering:A, 2014, 609:177-184. [37] DUTTA B, FROES F H. Additive manufacturing of titanium alloys[J]. Advanced Materials and Processes, 2014, 172(2):18-23. [38] BAUFELD B, BIEST O, DILLIEN S. Texture and crystal orientation in Ti-6Al-4V builds fabricated by shaped metal deposition[J]. Metallurgical and Materials Transactions A, 2010, 41(8):1917-1927. [39] CLARK D, WHITTAKER M T, BACHE M R. Microstructural characterization of a prototype titanium alloy structure processed via direct laser deposition(DLD)[J]. Metallurgical and Materials Transactions B, 2012, 43(2):388-396. [40] BAUFELD B, DER BIEST O V, GAULT R. Additive manufacturing of Ti-6Al-4V components by shaped metal deposition:Microstructure and mechanical properties[J]. Materials & Design, 2010, 31:S106-S111. [41] DINWIDDIE R B, DEHOFF R R, LLOYD P D, et al. Thermographic in-situ process monitoring of the electron-beam melting technology used in additive manufacturing[C]//SPIE Defense, Security, and Sensing. Proc SPIE 8705, Thermosense:Thermal Infrared Applications XXXV. 2013, 8705:156-164. [42] CHAUDHARY A. Modeling of laser-additive manufacturing processes[M]//Metals Process Simulation. Materials Park:ASM International, 2010:240-252. [43] SOCHALSKI-KOLBUS L M, PAYZANT E A, CORNWELL P A, et al. Comparison of residual stresses in Inconel 718 simple parts made by electron beam melting and direct laser metal sintering[J]. Metallurgical and Materials Transactions A, 2015, 46(3):1419-1432. [44] ZHANG J H, YANG Y, CAO S, et al. Fine equiaxed β grains and superior tensile property in Ti-6Al-4V alloy deposited by coaxial electron beam wire feeding additive manufacturing[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10):1311-1320. [45] DEHOFF R, DUTY C, PETER W, et al. Case study:additive manufacturing of aerospace brackets[J]. Advanced Materials and Processes, 2013, 171:19-22. [46] BIAMINO S, PENNA A, ACKELID U, et al. Electron beam melting of Ti-48Al-2Cr-2 Nb alloy:Microstructure and mechanical properties investigation[J]. Intermetallics, 2011, 19(6):776-781. [47] LIN B C, CHEN W, YANG Y, et al. Anisotropy of microstructure and tensile properties of Ti-48Al-2Cr-2 Nb fabricated by electron beam melting[J]. Journal of Alloys and Compounds, 2020, 830:154684. [48] LIN B C, CHEN W. Mechanical properties of TiAl fabricated by electron beam melting-A review[J]. China Foundry, 2021, 18(4):307-316. [49] 陈玮, 刘运玺, 李志强. 高强β钛合金的研究现状与发展趋势[J]. 航空材料学报, 2020, 40(3):63-76. CHEN W, LIU Y X, LI Z Q. Research status and development trend of high-strength β titanium alloys[J]. Journal of Aeronautical Materials, 2020, 40(3):63-76(in Chinese). [50] 乔虹, 刘运玺, 陈玮, 等. 热处理对EBM Ti-4Al-5V-5Mo-6Cr-1 Nb合金显微组织与拉伸性能的影响[J]. 航空制造技术, 2020, 63(19):85-90. QIAO H, LIU Y X, CHEN W, et al. Effect of heat treatment on microstructure and tensile properties of EBM Ti-4Al-5V-5Mo-6Cr-1 Nb alloy[J]. Aeronautical Manufacturing Technology, 2020, 63(19):85-90(in Chinese). [51] 徐滨士, 朱绍华. 表面工程的理论与技术[M]. 北京:国防工业出版社, 2010. XU B S, ZHU S H. Theories and technologies on surface engineering[M]. Beijing:National Defense Industry Press, 2010(in Chinese). [52] YARRAPAREDDY E, KOVACEVIC R. Synthesis and characterization of laser-based direct metal deposited nano-particles reinforced surface coatings for industrial slurry erosion applications[J]. Surface and Coatings Technology, 2008, 202(10):1951-1965. [53] PRZYBYLOWICZ J, KUSINSKI J. Laser cladding and erosive wear of Co-Mo-Cr-Si coatings[J]. Surface and Coatings Technology, 2000, 125(1-3):13-18. [54] 肖爱红, 邱长军, 李学兵. 激光表面改性技术及其应用综述[J]. 机械制造, 2006, 44(3):59-61. XIAO A H, QIU C J, LI X B. Laser surface processing technology and its application[J]. Machinery, 2006, 44(3):59-61(in Chinese). [55] 刘永, 张凡云, 施国梅, 等. 高能束表面改性技术在航空制造中的应用[J]. 航空制造技术, 2014, 57(S1):41-43,52. LIU Y, ZHANG F Y, SHI G M, et al. Application of power beam surface modification for aeronautical manufacturing[J]. Aeronautical Manufacturing Technology, 2014, 57(S1):41-43,52(in Chinese). [56] FAIRAND B P, WILCOX B A, GALLAGHER W J, et al. Laser shock-induced microstructural and mechanical property changes in 7075 aluminum[J]. Journal of Applied Physics, 1972, 43(9):3893-3895. [57] PEYRE P, FABBRO R. Laser shock processing:a review of the physics and applications[J]. Optical and Quantum Electronics, 1995, 27(12):1213-1229. [58] 张永康. 激光加工技术[M]. 北京:化学工业出版社, 2004. ZHANG Y K. Laser processing technology[M]. Beijing:Chemical Industry Press, 2004(in Chinese). [59] ZHANG X C, ZHANG Y K, LU J Z, et al. Improvement of fatigue life of Ti-6Al-4V alloy by laser shock peening[J]. Materials Science and Engineering:A, 2010, 527(15):3411-3415. [60] 曹子文, 邹世坤, 巩水利. 激光冲击处理技术最新动态及发展趋势[J]. 航空制造技术, 2010, 53(5):40-42. CAO Z W, ZOU S K, GONG S L. The latest movement and development trend of laser shock processing[J]. Aeronautical Manufacturing Technology, 2010, 53(5):40-42(in Chinese). [61] 王健, 邹世坤, 谭永生. 激光冲击处理技术在发动机上的应用[J]. 应用激光, 2005, 25(1):32-34. WANG J, ZOU S K, TAN Y S. Application of laser shock processing on turbine engines[J]. Applied Laser, 2005, 25(1):32-34(in Chinese). [62] 车志刚, 史一宁, 唐楠, 等. 激光诱导等离子体在材料表面强化中的应用[J]. 应用激光, 2013, 33(4):465-468. CHE Z G, SHI Y N, TANG N, et al. Applications of plasma induced by laser shock on surface treatment[J]. Applied Laser, 2013, 33(4):465-468(in Chinese). [63] 邹世坤, 曹子文, 赵勇, 等. Laser peening of aluminum alloy 7050 with fastener holes[J]. 中国光学快报(英文版), 2008, 6(2):116-119. ZOU S K, CAO Z W, ZHAO Y, et al. Laser peening of aluminum alloy 7050 with fastener holes[J]. Chinese Optics Letters, 2008, 6(2):116-119(in Chinese). [64] SANO Y, ADACHI T, AKITA K, et al. Enhancement of surface property by low-energy laser peening without protective coating[J]. Key Engineering Materials, 2007, 345-346:1589-1592. [65] 董一巍, 吴宗璞, 李效基, 等. 叶片气膜孔加工与测量技术的现状及发展趋势[J]. 航空制造技术, 2018, 61(13):16-25. DONG Y W, WU Z P, LI X J, et al. Current situation and development trend of processing and measurement technology for turbine blade film cooling hole[J]. Aeronautical Manufacturing Technology, 2018, 61(13):16-25(in Chinese). [66] PARK J K, YOON J W, CHO S H. Vibration assisted femtosecond laser machining on metal[J]. Optics and Lasers in Engineering, 2012, 50(6):833-837. [67] 张晓兵, 孙瑞峰. 二次法激光加工小孔技术研究[J]. 航空学报, 2014, 35(3):894-901. ZHANG X B, SUN R F. Sequential laser drilling technology[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):894-901(in Chinese). [68] FENG Q, PICARD Y N, LIU H, et al. Femtosecond laser micromachining of a single-crystal superalloy[J]. Scripta Materialia, 2005, 53(5):511-516. [69] FENG Q, PICARD Y N, MCDONALD J P, et al. Femtosecond laser machining of single-crystal superalloys through thermal barrier coatings[J]. Materials Science and Engineering:A, 2006, 430(1-2):203-207. [70] BALDACCHINI T, CAREY J E, ZHOU M, et al. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser[J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2006, 22(11):4917-4919. [71] VOROBYEV A Y, GUO C L. Femtosecond laser blackening of platinum[J]. Journal of Applied Physics, 2008, 104(5):053516. [72] 王西昌, 巩水利, 郭恩明, 等. 电子束"毛化"技术及其在复合材料制造领域中的应用[J]. 航空制造技术, 2009, 52(S1):53-55. WANG X C, GONG S L, GUO E M, et al. Electron beam surfi-sculpt technology and its application in composites manufacturing field[J]. Aeronautical Manufacturing Technology, 2009, 52(Sup.1):53-55(in Chinese). [73] 李凯, 付鹏飞, 唐代斌, 等. TC4钛合金电子束表面造型形貌及近表面组织特征[J]. 航空学报, 2017, 38(12):421361. LI K, FU P F, TANG D B, et al. Topography and near-surface microstructure of TC4 alloy treated by electron beam surfi-sculpt TM[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):421361(in Chinese). |