[1] 甄华萍,蒋崇文.高超声速技术验证飞行器HTV-2综述[J].飞航导弹, 2013(6):7-13. ZHEN H P, JIANG C W. Review of hypersonic flight validation vehicles-HTV-2[J]. Aerodynamic Missile Journal, 2013(6):7-13(in Chinese). [2] 周恒,张涵信.有关近空间高超声速飞行器边界层转捩和湍流的两个问题[J].空气动力学学报, 2017, 35(2):151-155. ZHOU H, ZHANG H X. Two problems in the transition and turbulence for near space hypersonic flying vehicles[J]. Acta Aerodynamica Sinica, 2017, 35(2):151-155(in Chinese). [3] 余平,段毅,尘军.高超声速飞行的若干气动问题[J].航空学报, 2015, 36(1):7-23. YU P, DUAN Y, CHEN J. Some aerodynamic issues in hypersonic flight[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):7-23(in Chinese). [4] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Washington, D.C.:NASA, 2014. [5] LIU Q, LUO Z B, WANG L, et al. Direct numerical simulations of supersonic turbulent boundary layer with streamwise-striped wall blowing[J]. Aerospace Science and Technology, 2021, 110:106510. [6] BERTIN J J, CUMMINGS R M. Critical hypersonic aerothermodynamic phenomena[J]. Annual Review of Fluid Mechanics, 2006, 38:129-157. [7] WHITEHEAD A. NASP aerodynamics:AIAA-1989-5013[R]. Reston:AIAA, 1989. [8] SCHNEIDER S P. Developing mechanism-based methods for estimating hypersonic boundary-layer transition in flight:the role of quiet tunnels[J]. Progress in Aerospace Sciences, 2015, 72:17-29. [9] 罗纪生.高超声速边界层的转捩及预测[J].航空学报, 2015, 36(1):357-372. LUO J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):357-372(in Chinese). [10] 陈坚强,涂国华,张毅锋,等.高超声速边界层转捩研究现状与发展趋势[J].空气动力学学报, 2017, 35(3):311-337. CHEN J Q, TU G H, ZHANG Y F, et al. Hypersnonic boundary layer transition:What we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3):311-337(in Chinese). [11] 陈坚强,袁先旭,涂国华,等.高超声速边界层转捩的几点认识[J].中国科学:物理学力学天文学, 2019, 49(11):125-138. CHEN J Q, YUAN X X, TU G H, et al. Recent progresses on hypersonic boundary-layer transition[J]. Scientia Sinica (Physica, Mechanica&Astronomica), 2019, 49(11):125-138(in Chinese). [12] 杨武兵,沈清,朱德华,等.高超声速边界层转捩研究现状与趋势[J].空气动力学学报, 2018, 36(2):183-195. YANG W B, SHEN Q, ZHU D H, et al. Tendency and current status of hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica, 2018, 36(2):183-195(in Chinese). [13] 苏彩虹.高超声速边界层转捩预测中的关键科学问题:感受性、扰动演化及转捩判据研究进展[J].空气动力学学报, 2020, 38(2):355-367. SU C H. Progress in key scientific problems of hypersonic bounary-layer transition prediction:Receptivity, evolution of disturbances and transition criterion[J]. Acta Aerodynamica Sinica, 2020, 38(2):355-367(in Chinese). [14] LEE C B, JIANG X Y. Flow structures in transitional and turbulent boundary layers[J]. Physics of Fluids, 2019, 31(11):111301. [15] LEE C B, CHEN S Y. Recent progress in the study of transition in the hypersonic boundary layer[J]. National Science Review, 2019, 6(1):155-170. [16] ZHU Y D, LEE C B, CHEN X, et al. Newly identified principle for aerodynamic heating in hypersonic flows[J]. Journal of Fluid Mechanics, 2018, 855:152-180. [17] ZHU Y D, GU D W, ZHU W K, et al. Dilatational-wave-induced aerodynamic cooling in transitional hypersonic boundary layers[J]. Journal of Fluid Mechanics, 2021, 911:A36. [18] 易仕和,刘小林,陆小革,等. NPLS技术在高超声速边界层转捩研究中的应用[J].空气动力学学报, 2020, 38(2):348-354, 378. YI S H, LIU X L, LU X G, et al. Application of NPLS technique in the researches on hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica, 2020, 38(2):348-354, 378(in Chinese). [19] 段毅,姚世勇,李思怡,等.高超声速边界层转捩的若干问题及工程应用研究进展综述[J].空气动力学学报, 2020, 38(2):391-403. DUAN Y, YAO S Y, LI S Y, et al. Review of progress in some issues and engineering application of hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica, 2020, 38(2):391-403(in Chinese). [20] 李志文,袁海涛,黄斌,等.从总体设计角度透视高超声速飞行器边界层转捩问题[J].空气动力学学报, 2021, 39(4):26-38. LI Z W, YUAN H T, HUANG B, et al. The hypersonic boundary-layer transition:A perspective from the view of system design[J]. Acta Aerodynamica Sinica, 2021, 39(4):26-38(in Chinese). [21] MACK L M. Boundary-layer stability theory[M]//MICHEL R. Special course on stability and transition of laminar flow. Paris:AGARD, 1984:1-81. [22] FEDOROV A. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics, 2011, 43:79-95. [23] LIU X L, YI S H, XU X W, et al. Experimental study of second-mode wave on a flared cone at Mach 6[J]. Physics of Fluids, 2019, 31(7):074108. [24] 徐国亮,符松.可压缩横流失稳及其控制[J].力学进展, 2012, 42(3):262-273. XU G L, FU S. The instability and control of compressible cross flows[J]. Advances in Mechanics, 2012, 42(3):262-273(in Chinese). [25] 任杰.高超声速边界层G rtler涡二次失稳和转捩控制研究[D].北京:清华大学, 2015. REN J. Secondary instabilities of G rtler vortices in high-speed boundary layers and control on flow transition[D]. Beijing:Tsinghua University, 2015(in Chinese). [26] 陈曦.高超声速边界层转捩问题研究[D].北京:北京大学,2018. CHEN X. Study on hypersonic boundary layer transition[D]. Beijing:Peking University, 2018(in Chinese). [27] 陈坚强,涂国华,万兵兵,等. HyTRV流场特征与边界层稳定性特征分析[J].航空学报, 2021, 42(6):124317. CHEN J Q, TU G H, WAN B B, et al. Characteristics of flow field and boundary-layer stability of HyTRV[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6):124317(in Chinese). [28] KIMMEL R. Aspects of hypersonic boundary layer transition control:AIAA-2003-0772[R]. Reston:AIAA, 2003. [29] 董昊,刘是成,程克明.粗糙元对高超声速边界层转捩影响的研究进展[J].实验流体力学, 2018, 32(6):1-15. DONG H, LIU S C, CHENG K M. Review of hypersonic boundary layer transition induced by roughness elements[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6):1-15(in Chinese). [30] SCHNEIDER S P. Effects of roughness on hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rockets, 2008, 45(2):193-209. [31] STERRETT J R, HOLLOWAY P F. Effects of controlled roughness on boundary-layer transition at a Mach number of 6[J]. AIAA Journal, 1963, 1(8):1951-1953. [32] HOLLOWAY P F, STERRETT J R. Effect of controlled surface roughness on boundary-layer transition and heat transfer at mach numbers of 4.8 and 6.0:NASA TN D-2054[R]. Washington, D.C.:NASA, 1964. [33] FEDOROV A. Receptivity of hypersonic boundary layer to acoustic disturbances scattered by surface roughness:AIAA-2003-3731[R]. Reston:AIAA, 2003. [34] MARXEN O, IACCARINO G, SHAQFEH E S G. Disturbance evolution in a Mach 4.8 boundary-layer with two-dimensional roughness-induced separation and shock[J]. Journal of Fluid Mechanics, 2010, 648:435-469. [35] DUAN L, WANG X W, ZHONG X L. A high-order cut-cell method for numerical simulation of hypersonic boundary-layer instability with surface roughness[J]. Journal of Computational Physics, 2010, 229:7207-7237. [36] ZHONG X L, WANG X W. Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers[J]. Annual Review of Fluid Mechanics, 2012, 44:527-561. [37] DUAN L, WANG X W, ZHONG X L. Stabilization of a Mach 5.92 boundary layer by two-dimensional finite-height roughness[J]. AIAA Journal, 2013, 51(1):266-270. [38] FONG K D, WANG X W, ZHONG X L. Numerical simulation of roughness effect on the stability of a hypersonic boundary layer[J]. Computers&Fluids, 2014, 96:350-367. [39] FONG K D, ZHONG X L. DNS and PSE study on the stabilization effect of hypersonic boundary layer waves using 2-D surface roughness:AIAA-2016-3347[R]. Reston:AIAA, 2016. [40] 李慧.单个粗糙元对可压缩平板边界层稳定性影响的研究[D].天津:天津大学, 2014. LI H. The effect of single roughness element on the stability in a compressible boundary layer on a flat plate[D]. Tianjin:Tianjin University, 2014(in Chinese). [41] BAGHERI S, HANIFI A. The stabilizing effect of streaks on Tollmien-Schlichting and oblique waves:A parametric study[J]. Physics of Fluids, 2007, 19(7):078103. [42] PAREDES P, CHOUDHARI M, LI F. Transition delay in hypersonic boundary layers via optimal perturbations:NASA/TM-2016-219210[R]. Washington,D.C.:NASA, 2016. [43] FRANSSON J H M, TALAMELLI A, BRANDT L, et al. Delaying transition to turbulence by a passive mechanism[J]. Physical Review Letters, 2006, 96(6):064501. [44] REN J, FU S, HANIFI A. Stabilization of the hypersonic boundary layer by finite-amplitude streaks[J]. Physics of Fluids, 2016, 28:024110. [45] PAREDES P, CHOUDHARI M M, LI F. Transition delay via vortex generators in a hypersonic boundary layer at flight conditions:AIAA-2018-3217[R]. Reston:AIAA, 2018. [46] PAREDES P, CHOUDHARI M, LI F. Instability wave-streak interactions in a high Mach number boundary layer at flight conditions[J]. Journal of Fluid Mechanics, 2019, 858:474-499. [47] SARIC W S, CARRILLO R B, REIBERT M S. Leading-edge roughness as a transition control mechanism:AIAA-1998-0781[R]. Reston:AIAA, 1998. [48] REED H, SARIC W. Supersonic laminar flow control on swept wings using distributed roughness:AIAA-2002-0147[R]. Reston:AIAA, 2002. [49] RIZZETTA D P, VISBAL M R, REED H L, et al. Direct numerical simulation of discrete roughness on a swept-wing leading edge[J]. AIAA Journal, 2010, 48(11):2660-2673. [50] SCHUELE C Y, CORKE T C, MATLIS E. Control of stationary crossflow modes in a Mach 3.5 boundary layer using patterned passive and active roughness[J]. Journal of Fluid Mechanics, 2013, 718:5-38. [51] CORKE T, ARNDT A, MATLIS E, et al. Control of stationary cross-flow modes in a Mach 6 boundary layer using patterned roughness[J]. Journal of Fluid Mechanics, 2018, 856:822-849. [52] OWENS L R, BEELER G B, BALAKUMAR P, et al. Flow disturbance and surface roughness effects on cross-flow boundary-layer transition in supersonic flows:AIAA-2014-2638[R]. Reston:AIAA, 2014. [53] SARIC W S, WEST D E, TUFTS M W, et al. Experiments on discrete roughness element technology for swept-wing laminar flow control[J]. AIAA Journal, 2019, 57(2):641-654. [54] CARPENTER A. In-flight receptivity experiments on a 30-degree swept-wing using micron-sized discrete roughness elements[D]. College Station:Texas A&M University, 2009. [55] LEES L, GOLD H. Stability of laminar boundary layers and wakes at hypersonic speeds. Part 1:Stability of laminar wakes[C]//Proceedings of the International Symposium on Fundamental Phenomena in Hypersonic Flows, 1966. [56] LYSENKO V I. Experimental studies of stability and transition in high-speed wakes[J]. Journal of Fluid Mechanics, 1999, 392:1-26. [57] FUJII K. Experiment of the two-dimensional roughness effect on hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rockets, 2006, 43(4):731-738. [58] NOVIKOV A, EGOROV I, FEDOROV A. Direct numerical simulation of supersonic boundary layer stabilization using grooved wavy surface:AIAA-2010-1245[R]. Reston:AIAA, 2010. [59] BOUNTIN D, CHIMITOV T, MASLOV A, et al. Stabilization of a hypersonic boundary layer using a wavy surface[J]. AIAA Journal, 2013, 51(5):1203-1210. [60] ZHOU Y L, LIU W, CHAI Z X, et al. Numerical simulation of wavy surface effect on the stability of a hypersonic boundary layer[J]. Acta Astronautica, 2017, 140:485-496. [61] SI W F, HUANG G L, ZHU Y D, et al. Hypersonic aerodynamic heating over a flared cone with wavy wall[J]. Physics of Fluids, 2019, 31(5):051702. [62] ZHU W K, SHI M T, ZHU Y D, et al. Experimental study of hypersonic boundary layer transition on a permeable wall of a flared cone[J]. Physics of Fluids, 2020, 32(1):011701. [63] MALMUTH N, FEDOROV A, SHALAEV V, et al. Problems in high speed flow prediction relevant to control:AIAA-1998-2695[R]. Reston:AIAA, 1998. [64] FEDOROV A V, MALMUTH N D, RASHEED A, et al. Stabilization of hypersonic boundary layers by porous coatings[J]. AIAA Journal, 2001, 39(4):605-610. [65] FEDOROV A, SHIPLYUK A, MASLOV A, et al. Stabilization of a hypersonic boundary layer using an ultrasonically absorptive coating[J]. Journal of Fluid Mechanics, 2003, 479:99-124. [66] CHOKANI N, BOUNTIN D A, SHIPLYUK A N, et al. Nonlinear aspects of hypersonic boundary-layer stability on a porous surface[J]. AIAA Journal, 2005, 43(1):149-155. [67] SANDHAM N D, LVDEKE H. A numerical study of Mach 6 boundary layer stabilization by means of a porous surface:AIAA-2009-1288[R]. Reston:AIAA, 2009. [68] DE TULLIO N, SANDHAM N D. Direct numerical simulation of breakdown to turbulence in a Mach 6 boundary layer over a porous surface[J]. Physics of Fluids, 2010, 22(9):094105. [69] BRōS G A, INKMAN M, COLONIUS T, et al. Second-mode attenuation and cancellation by porous coatings in a high-speed boundary layer[J]. Journal of Fluid Mechanics, 2013, 726:312-337. [70] TRITARELLI R C, LELE S K, FEDOROV A. Stabilization of a hypersonic boundary layer using a felt-metal porous coating[J]. Journal of Fluid Mechanics, 2015, 769:729-739. [71] LUKASHEVICH S V, MOROZOV S O, SHIPLYUK A N. Experimental study of the effect of a passive porous coating on disturbances in a hypersonic boundary layer.1.Effect of the porous coating length[J]. Journal of Applied Mechanics and Technical Physics, 2013, 54(4):572-577. [72] LUKASHEVICH S V, MOROZOV S O, SHIPLYUK A N. Experimental study of the effect of a passive porous coating on disturbances in a hypersonic boundary layer 2. Effect of the porous coating location[J]. Journal of Applied Mechanics and Technical Physics, 2016, 57(5):873-878. [73] LUKASHEVICH S V, MOROZOV S O, SHIPLYUK A N. Passive porous coating effect on a hypersonic boundary layer on a sharp cone at small angle of attack[J]. Experiments in Fluids, 2018, 59:130. [74] SOUSA V C B, PATEL D, CHAPELIER J B, et al. Numerical investigation of second-mode attenuation over carbon/carbon porous surfaces[J]. Journal of Spacecraft and Rockets, 2019, 56(2):319-332. [75] SCALO C, SOUSA V, BOSE R. Numerical investigation of hypersonic turbulence transition control via complex wall impedance:AIAA-2019-2151[R]. Reston:AIAA, 2019. [76] FIEVET R, DENIAU H, BRAZIER J P, et al. Numerical study of hypersonic boundary-layer transition delay through second-mode absorption:AIAA-2020-2061[R]. Reston:AIAA, 2020. [77] MASLOV A. Experimental and theoretical studies of hypersonic laminar flow control using ultrasonically absorptive coatings (UAC):ISTC 2172-2001[R]. Moscow:International Science and Technology Center, 2003. [78] WANG X W, ZHONG X L. Numerical Simulations on mode S growth over feltmetal and regular porous coatings of a Mach 5.92 flow:AIAA-2011-0375[R]. Reston:AIAA, 2011. [79] WAGNER A, KUHN M, MARTINEZ SCHRAMM J, et al. Experiments on passive hypersonic boundary layer control using ultrasonically absorptive carbon-carbon material with random microstructure[J]. Experiments in Fluids, 2013, 54(10):1-10. [80] 朱德华,刘智勇,袁湘江.多孔表面推迟高超声速边界层转捩的机理[J].计算物理, 2016, 33(2):163-169. ZHU D H, LIU Z Y, YUAN X J. Mechanism of transition delay by porous surface in hypersonic boundary layers[J]. Chinese Journal of Computational Physics, 2016, 33(2):163-169(in Chinese). [81] 涂国华,陈坚强,袁先旭,等.多孔表面抑制第二模态失稳的最优开孔率和孔半径分析[J].空气动力学学报, 2018, 36(2):273-278. TU G H, CHEN J Q, YUAN X X, et al. Optimal porosity and pore radius of porous surfaces for damping the second-mode instability[J]. Acta Aerodynamica Sinica, 2018, 36(2):273-278(in Chinese). [82] ZHAO R, LIU T, WEN C Y, et al. Theoretical modeling and optimization of porous coating for hypersonic laminar flow control[J]. AIAA Journal, 2018, 56(8):2942-2946. [83] ZHAO R, ZHANG X X, WEN C Y. Theoretical modeling of porous coatings with simple microstructures for hypersonic boundary-layer stabilization[J]. AIAA Journal, 2020, 58(2):981-986. [84] TIAN X, ZHAO R, LONG T, et al. Reverse design of ultrasonic absorptive coating for the stabilization of Mack modes[J]. AIAA Journal, 2019, 57(6):2264-2269. [85] ZHAO R, LIU T, WEN C Y, et al. Impedance-near-zero acoustic metasurface for hypersonic boundary-layer flow stabilization[J]. Physical Review Applied, 2019, 11(4):044015. [86] 赵瑞,严昊,席柯,等.声学超表面抑制第一模态研究[J].航空科学技术, 2020, 31(11):104-112. ZHAO R, YAN H, XI K, et al. Research on acoustic metasurfaces for the suppression of the first mode[J]. Aeronautical Science&Technology, 2020, 31(11):104-112(in Chinese). [87] ZHU W K, CHEN X, ZHU Y D, et al. Nonlinear interactions in the hypersonic boundary layer on the permeable wall[J]. Physics of Fluids, 2020, 32(10):104110. [88] 郭启龙,涂国华,陈坚强,等.横向矩形微槽对高超边界层失稳的控制作用[J].航空动力学报, 2020, 35(1):135-143. GUO Q L, TU G H, CHEN J Q, et al. Control of hypersonic boundary layer instability by transverse rectangular micro-cavities[J]. Journal of Aerospace Power, 2020, 35(1):135-143(in Chinese). [89] ADAM P H, HORNUNG H G. Enthalpy effects on hypervelocity boundary-layer transition:Ground test and flight data[J]. Journal of Spacecraft and Rockets, 1997, 34(5):614-619. [90] MALIK M R. Prediction and control of transition in supersonic and hypersonic boundary layers[J]. AIAA Journal, 1989, 27(11):1487-1493. [91] 赵耕夫.超音速/高超音速三维边界层的层流控制[J].力学学报, 2001, 33(4):519-524. ZHAO G F. Laminar flow control of supersonic/hypersonic three-dimensional boundary layer[J]. Acta Mechanica Sinica, 2001, 33(4):519-524(in Chinese). [92] KAZAKOV A V, KOGAN M N. Stability of subsonic laminar boundary layer on a flat plate with volume energy supply[J]. Fluid Dynamics, 1988, 23(2):211-215. [93] SOUDAKOV V, FEDOROV A, EGOROV I. Stability of high-speed boundary layer on a sharp cone with localized wall heating or cooling[J]. Progress in Flight Physics, 2015, 7:569-584. [94] FEDOROV A, SOUDAKOV V, EGOROV I, et al. High-speed boundary-layer stability on a cone with localized wall heating or cooling[J]. AIAA Journal, 2015, 53(9):2512-2524. [95] ZHAO R, WEN C Y, TIAN X D, et al. Numerical simulation of local wall heating and cooling effect on the stability of a hypersonic boundary layer[J]. International Journal of Heat and Mass Transfer, 2018, 121:986-998. [96] FEDOROV A V, RYZHOV A A, SOUDAKOV V G, et al. Numerical simulation of the effect of local volume energy supply on high-speed boundary layer stability[J]. Computers&Fluids, 2014, 100:130-137. [97] GERMAIN P. The boundary layer on a sharp cone in high-enthalpy flow[D]. Pasadena:California Institute of Technology, 1993. [98] HORNUNG H G, ADAM P H, GERMAIN P, et al. On transition and transition control in hypervelocity flows[C]//Proceedings of the Ninth Asian Congress of Fluid Mechanics, 2002. [99] LEYVA I, LAURENCE S, BEIERHOLM A, et al. Transition delay in hypervelocity boundary layers by means of CO2/acoustic instability interactions:AIAA-2009-1287[R]. Reston:AIAA, 2009. [100] LEYVA I, JEWELL J, LAURENCE S, et al. On the impact of injection schemes on transition in hypersonic boundary layers:AIAA-2009-7204[R]. Reston:AIAA, 2009. [101] JEWELL J, WAGNILD R, LEYVA I, et al. Transition within a hypervelocity boundary layer on a 5-degree half-angle cone in air/CO2 mixtures:AIAA-2013-0523[R]. Reston:AIAA, 2013. [102] FEDOROV A V, SOUDAKOV V, LEYVA I A. Stability analysis of high-speed boundary-layer flow with gas injection:AIAA-2014-2498[R]. Reston:AIAA, 2014. [103] GAPONOV S A, SMORODSKY B V. Control of supersonic boundary layer and its stability by means of foreign gas injection through the porous wall[J]. International Journal of Theoretical and Applied Mechanics, 2016, 1:97-103. [104] GAPONOV S A, ERMOLAEV Y G, ZUBKOV N N, et al. Investigation of the effect of heavy gas injection into a supersonic boundary layer on laminar-turbulent transition[J]. Fluid Dynamics, 2017, 52(6):769-776. [105] 刘强,罗振兵,邓雄,等.合成冷/热射流控制超声速边界层流动稳定性[J].物理学报, 2017, 66(23):222-232. LIU Q, LUO Z B, DENG X, et al. Linear stability of supersonic boundary layer with synthetic cold/hot jet control[J]. Acta Physica Sinica, 2017, 66(23):222-232(in Chinese). [106] CRAIG S A, HUMBLE R A, HOFFERTH J W, et al. Flow-field characterization of DBD plasma actuators as discrete roughness elements for laminar flow control[C]//64th Annual Meeting of the APS Division of Fluid Dynamics, 2011. [107] WANG Z F, WANG L, FU S. Sensitivity analysis of crossflow boundary layer and transition delay using plasma actuator:AIAA-2016-3933[R]. Reston:AIAA, 2016. [108] YATES H B, MATLIS E H, JULIANO T J, et al. Plasma-actuated flow control of hypersonic crossflow-induced boundary-layer transition[J]. AIAA Journal, 2020, 58(5):2093-2108. [109] MIRÓ F M, DEHAIRS P, PINNA F, et al. Effect of wall blowing on hypersonic boundary-layer transition[J]. AIAA Journal, 2019, 57(4):1567-1578. [110] KUDRYAVTSEV A, KHOTYANOVSKY D. Linear stability of supersonic boundary layer over a cooled porous surface[J]. Journal of Physics:Conference Series, 2019, 1404:012114. [111] WANG X W, ZHONG X L, MA Y B. Response of a hypersonic boundary layer to wall blowing-suction[J]. AIAA Journal, 2011, 49(7):1336-1353. [112] WANG S Z, LEI J M, ZHEN H P, et al. Numerical investigation of wall cooling and suction effects on supersonic flat-plate boundary layer transition using large eddy simulation[J]. Advances in Mechanical Engineering, 2015, 7(2):493194. [113] WANG X W, LALLANDE D. Hypersonic boundary-layer stabilization using steady blowing and suction:Effect of forcing location:AIAA-2020-2059[R]. Reston:AIAA, 2020. [114] 罗振兵,刘强,邓雄,等.一种主被动组合的超高速边界层转捩宽频控制方法:202011087796.0[P]. 2020-10-13. LUO Z B, LIU Q, DENG X, et al. A combined active and passive broadband-frequency control method for hypersonic boundary layer transition:202011087796.0[P]. 2020-10-13(in Chinese). |