航空学报 > 2020, Vol. 41 Issue (12): 124059-124059   doi: 10.7527/S1000-6893.2020.24059

空天飞行器整体式救生座舱的稳定减速与分离特性数值模拟

刘愿1,2, 陈川3, 钱战森1,2   

  1. 1. 中国航空工业空气动力研究院, 沈阳 110034;
    2. 高速高雷诺数气动力航空科技重点实验室, 沈阳 110034;
    3. 航空工业成都飞机设计研究所, 成都 510100
  • 收稿日期:2020-04-07 修回日期:2020-04-28 发布日期:2020-05-21
  • 通讯作者: 钱战森 E-mail:qianzs@avicari.com.cn
  • 基金资助:
    航空科学基金(2017ZA7005)

Numerical simulation of stable deceleration and safe separation of integral escape module for aerospace vehicles

LIU Yuan1,2, CHEN Chuan3, QIAN Zhansen1,2   

  1. 1. AVIC Aerodynamics Research Institute, Shenyang 110034, China;
    2. Aeronautical Science and Technology Key Lab for High Speed and High Reynolds Number Aerodynamic Force Research, Shenyang 110034, China;
    3. AVIC Chengdu Aircraft Design Institute, Chengdu 510100, China
  • Received:2020-04-07 Revised:2020-04-28 Published:2020-05-21
  • Supported by:
    Aeronautical Science Foundation of China (2017ZA7005)

摘要: 整体式密闭救生座舱方案将座椅与驾驶舱进行整体设计,弹射后具有独立的气动型面,在包含亚声速、跨声速、超声速甚至高超声速等非常宽广的速度范围可以更好地保护飞行员免受高速气流的吹袭,是空天飞行器救生系统设计的重要途径之一。针对整体式救生座舱,首先开展基本静态气动性能数值模拟评估;之后采用一种刚性减速伞增稳方案(整体式座舱+减速伞)对其稳定性和减速效率进行改进;最后采用动态重叠网格方法,对整体式座舱+减速伞构型的近机弹射轨迹特性开展动态数值模拟计算,从而获得该构型在抛投过程中的稳定性和安全性。研究结果表明,单独整体式救生座舱难以具备静稳定性;减速伞方案可大幅改善座舱的稳定性能,使座舱在Ma=0.3~4.0范围内均具有静、动态稳定性,并呈现亚声速时随马赫数升高而增强、超声速时随马赫数升高而减弱的变化规律,且高马赫数(Ma=4.0)工况可通过降低飞行高度以增加动压的方式进一步提升座舱的动稳定性;在宽速域范围内,整体式座舱+减速伞构型经过弹射力和火箭推力的辅助作用,能够实现与机体的安全分离,并且分离后其俯仰振荡姿态均具有收敛特性。

关键词: 整体式救生座舱, 宽速域, 稳定性, 减速伞, 重叠网格

Abstract: The integral escape module concept integrates the seat and the cockpit in order to obtain an independent aerodynamic configuration after ejection. A maximum protection can be offered for the crew from high-speed wind blast. Therefore, the integral escape module will be one of the important approaches for the design of the escape system for the aerospace vehicle. In this study, we first conduct numerical simulation of an integral escape module to evaluate its basic aerodynamic performance. Then a rigid brake parachute scheme is proposed to improve the stability and deceleration efficiency of the integral escape module. Finally, the unsteady computational method with a dynamic chimera grid technique is applied to the simulation of the escape process. The numerical results reveal a lack of static stability of the single integral escape module. However, both static and dynamic stability can be significantly improved by using the brake parachute combination scheme in the wide flight envelop of Ma=0.3~4.0. With the growth of Mach number, the stability increases at subsonic speed, while decreases at supersonic speed. The dynamic stability can be further improved by reducing the flying altitude to increase the dynamic pressure at high Mach numbers (e.g. Ma=4.0). In the wide flight envelope, the ejection escape trajectory of the integral escape module shows that the module combined with the brake parachute can be safely separated from the aerospace vehicle assisted by the ejection force and rocket thrust, with its attitude converging gradually.

Key words: integral escape modules, wide speed range, stability, brake parachute, chimera grid

中图分类号: