1 |
谭骏怡, 胡俊华, 陈国明, 等. 水空跨介质航行器斜出水过程数值仿真[J]. 中国舰船研究, 2019, 14(6): 104-121.
|
|
TAN J Y, HU J H, CHEN G M, et al. Numerical simulation of oblique water-exit process of trans-media aerial underwater vehicle[J]. Chinese Journal of Ship Research, 2019, 14(6): 104-121 (in Chinese).
|
2 |
钱铖铖, 余春华, 穆青, 等. 发射速度和发射角度对射弹高速入水流动的影响[J]. 兵器装备工程学报, 2019, 40(7): 35-39, 50.
|
|
QIAN C C, YU C H, MU Q, et al. Numerical research of effects of launch speed and launch angle on water entry of high-speed projectile[J]. Journal of Ordnance Equipment Engineering, 2019, 40(7): 35-39, 50 (in Chinese).
|
3 |
孙玉松, 周穗华, 张晓兵. 非周期性入水冲击问题研究进展[J]. 舰船科学技术, 2020, 42(1): 6-10.
|
|
SUN Y S, ZHOU S H, ZHANG X B. Research progress on the nonperiodic water-entry impact problem[J]. Ship Science and Technology, 2020, 42(1): 6-10 (in Chinese).
|
4 |
邓见, 金楠, 周意琦, 等. 仿飞鱼跨介质无人平台的探索研究[J]. 水动力学研究与进展(A辑), 2020, 35(1): 55-60.
|
|
DENG J, JIN N, ZHOU Y Q, et al. Preliminary study on aerial-aquatic unmanned vehicle mimicking flying fish[J]. Chinese Journal of Hydrodynamics, 2020, 35(1): 55-60 (in Chinese).
|
5 |
汪振, 吴茂林, 戴文留. 大口径弹体高速入水载荷特性研究[J]. 弹道学报, 2020, 32(1): 15-22.
|
|
WANG Z, WU M L, DAI W L. Study on load characteristics of high-speed water-entry of large caliber projectile[J]. Journal of Ballistics, 2020, 32(1): 15-22 (in Chinese).
|
6 |
SUN T Z, SHEN J, JIANG Q, et al. Dynamics analysis of high-speed water entry of axisymmetric body using fluid-structure-acoustic coupling method[J]. Journal of Fluids and Structures, 2022, 111: 103551.
|
7 |
WAGNER H. Über stoß- und gleitvorgänge an der oberfläche von Flüssigkeiten[J]. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik, 1932, 12(4): 193-215.
|
8 |
LOGVINOVICH G V. Hydrodynamics of flows with free boundaries[M]. New York: Halsted Press, 1973.
|
9 |
KOROBKIN A. Analytical models of water impact[J]. European Journal of Applied Mathematics, 2004, 15(6): 821-838.
|
10 |
TASSIN A, PIRO D J, KOROBKIN A A, et al. Two-dimensional water entry and exit of a body whose shape varies in time[J]. Journal of Fluids and Structures, 2013, 40: 317-336.
|
11 |
HU J H, XU B W, FENG J F, et al. Research on water-exit and take-off process for Morphing Unmanned Submersible Aerial Vehicle[J]. China Ocean Engineering, 2017, 31(2): 202-209.
|
12 |
BISPLINGHOFF R L, DOHERTY C S. Some studies of the impact of vee wedges on a water surface[J]. Journal of the Franklin Institute, 1952, 253(6): 547-561.
|
13 |
TVEITNES T, FAIRLIE-CLARKE A C, VARYANI K. An experimental investigation into the constant velocity water entry of wedge-shaped sections[J]. Ocean Engineering, 2008, 35(14-15): 1463-1478.
|
14 |
LEE M, LONGORIA R G, WILSON D E. Cavity dynamics in high-speed water entry[J]. Physics of Fluids, 1997, 9(3): 540-550.
|
15 |
WEI Z Y, HU C H. Experimental study on water entry of circular cylinders with inclined angles[J]. Journal of Marine Science and Technology, 2015, 20(4): 722-738.
|
16 |
SHI H H, ITOH M, TAKAMI T. Optical observation of the supercavitation induced by high-speed water entry[J]. Journal of Fluids Engineering, 2000, 122(4): 806-810.
|
17 |
SHI H H, TAKAMI T. Some progress in the study of the water entry phenomenon[J]. Experiments in Fluids, 2001, 30(4): 475-477.
|
18 |
ZHENG K Y, ZHAO X Z, YANG Z J, et al. Numerical simulation of water entry of a wedge using a modified ghost-cell immersed boundary method[J]. Journal of Marine Science and Technology, 2020, 25(2): 589-608.
|
19 |
SHI Y, PAN G, YAN G X, et al. Numerical study on the cavity characteristics and impact loads of AUV water entry[J]. Applied Ocean Research, 2019, 89: 44-58.
|
20 |
LU Y L, HU J H, CHEN G M, et al. Optimization of water-entry and water-exit maneuver trajectory for morphing unmanned aerial-underwater vehicle[J]. Ocean Engineering, 2022, 261: 112015.
|
21 |
施红辉, 周东辉, 周栋, 等. 两连发射弹出入水的轴对称超空泡流动特性[J]. 空气动力学学报, 2020, 38(6): 1064-1074.
|
|
SHI H H, ZHOU D H, ZHOU D, et al. Flow characteristics of axisymmetric supercavitation induced by two successively fired projectiles in water entry and exit[J]. Acta Aerodynamica Sinica, 2020, 38(6): 1064-1074 (in Chinese).
|
22 |
袁绪龙, 栗敏, 丁旭拓, 等. 跨介质航行器高速入水冲击载荷特性[J]. 兵工学报, 2021, 42(7): 1440-1449.
|
|
YUAN X L, LI M, DING X T, et al. Impact load characteristics of a trans-media vehicle during high-speed water-entry[J]. Acta Armamentarii, 2021, 42(7): 1440-1449 (in Chinese).
|
23 |
李国良, 尤天庆, 孔德才, 等. 旋成体高速入水可压缩性影响研究[J]. 兵工学报, 2020, 41(4): 720-729.
|
|
LI G L, YOU T Q, KONG D C, et al. Effect of fluid compressibility on high-speed water-entry of revolutionary body[J]. Acta Armamentarii, 2020, 41(4): 720-729 (in Chinese).
|
24 |
LI Y L, FENG J F, HU J H, et al. Research on the motion characteristics of a trans-media vehicle when entering water obliquely at low speed[J]. International Journal of Naval Architecture and Ocean Engineering, 2018, 10(2): 188-200.
|
25 |
田北晨, 刘涛涛, 吴钦, 等. 跨介质飞行器触水滑跳运动特性数值模拟[J]. 兵工学报, 2022, 43(3): 586-598.
|
|
TIAN B C, LIU T T, WU Q, et al. Numerical simulation on kinematic characteristics of trans-media aircraft during water-skipping[J]. Acta Armamentarii, 2022, 43(3): 586-598 (in Chinese).
|
26 |
谢路毅, 曹留帅, 万德成. 基于重叠网格方法模拟双圆柱入水过程[J]. 水动力学研究与进展(A辑), 2021, 36(2): 244-251.
|
|
XIE L Y, CAO L S, WAN D C. Simulation of twin-cylinder water entry process based on overset grid method[J]. Chinese Journal of Hydrodynamics, 2021, 36(2): 244-251 (in Chinese).
|
27 |
付晓琴, 李阳辉, 卢昱锦, 等. 二维平板水漂运动数值模拟[J]. 航空学报, 2021, 42(6): 124351.
|
|
FU X Q, LI Y H, LU Y J, et al. Numerical simulation of two-dimensional plate skipping[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124351 (in Chinese).
|
28 |
WANG Z, FENG P H, LIU G Q, et al. Load and motion behaviors of ogive-nosed projectile during high-speed water entry with angle of attack[J]. Ocean Engineering, 2022, 266: 112937.
|