[1] YANG G, STEVE C. Review on space robotics:Toward top-level science through space exploration[J]. Science Robot, 2017, 2(7):5074. [2] TOMASZ R. Obstacle avoidance in space robotics:Review of major challenges and proposed solutions[J]. Progress in Aerospace Sciences, 2018, 101:31-48. [3] IJAR M F, MAURCIO N P. The state-of-the-art in space robotics[J]. Journal of Physics:Conference Series, 2015, 641. [4] SHIN I N, SACHIKO W. Lunar surface exploration using mobile robots[J]. Central European Journal of Engineering, 2012, 2(2):156-163. [5] 刘方湖, 陈建平, 马培荪, 等. 行星探测机器人的研究现状和发展趋势[J]. 机器人, 2002, 24(3):268-275. LIU F H, CHEN J P, MA P S, et al. Research status and development trend towards planetary exploration robots[J]. Robot, 2002, 24(3):268-275(in Chinese). [6] 贺波勇, 李海阳. 载人登月着陆器奔月窗口搜索方法[J]. 航空学报, 2017, 38(4):268-276. HE B Y, LI H Y. Lunar module trans-lunar window searching approach for manned lunar mission[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):268-276(in Chinese). [7] 卢波. 世界月球探测的发展回顾与展望[J]. 国际太空, 2019(1):12-18. LU B. Review and prospect of the development of world lunar exploration[J]. Space International, 2019(1):12-18(in Chinese). [8] 岳富占, 崔平远, 崔祜涛, 等. 月球巡视探测器自主定向算法研究[J]. 航空学报, 2006, 27(3):500-504. YUE F Z, CUI P Y, CUI H T, et al. Algorithm research on lunar rover autonomous heading detection[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(3):500-504(in Chinese). [9] JAMES J Z, DAVID B M, JEFFREY M W, et al. Exploration rover concepts and development challenges[C]//First AIAA Space Exploration Conference. Reston:AIAA, 2005:1-23. [10] 张玉花, 肖杰, 张晓伟, 等. 嫦娥三号巡视器移动设计与实现[J]. 中国科学(技术科学), 2014, 44(5):483-491. ZHANG Y H, XIAO J, ZHANG X W, et al. Design and implementation of Chang'E-3 rover location system[J]. Scientia Slnica Technologica, 2014, 44(5):483-491(in Chinese). [11] 李爽, 江秀强. 火星进入减速器技术综述与展望[J].航空学报, 2015, 36(2):422-440. LI S, JIANG X Q. Review and prospect of decelerator technologies for Mars entry[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):422-440(in Chinese). [12] ROBERT B. Robots for space exploration[J]. Industrial Robot:An International Journal, 2012, 39(4):323-328. [13] CAFFREY R, UDOMKESMALEE G, HAYATI S, et al. Initiating the 2002 Mars science laboratory (MSL) focused technology program[C]//IEEE Aerospace Conference Proceedings. Piscataway:IEEE Press, 2004:638-652. [14] KEITH N, STEVEN H. Mars science laboratory rover actuator thermal design[R]. Washington, D.C.:Jet Propulsion Laboratory/California Institute of Technology, 2008. [15] MAX B, MARK W M, DANIEL H. Autonomy for Mars rovers:Past, present, and future[J]. Computer, 2008, 41(12):44-50. [16] LI R X, KAICHANG D, LARRY H, et al. Rover localization and landing-site mapping technology for the 2003 Mars exploration rover mission[J]. Photogrammetric Engineering & Remote Sensing, 2004, 70(1):77-90. [17] YOSHIAKI K, ALBERTO E, MARK M, et al. Path planning challenges for planetary robots[J]. Journal of the Physical Society of Japan, 2008, 57(8):2745-2750. [18] MAKI J N, THIESSEN D, POURANGI A, et al. The Mars science laboratory (MSL) hazard avoidance cameras (Hazcams)[C]//Lunar and Planetary Science Conference, 2012. [19] MAKI J, THIESSEN D, POURANGI A, et al. The Mars science laboratory engineering cameras[J]. Space Science Reviews, 2012, 170(1-4):77-93. [20] THIESSEN D, POURANGI A, KOBZEFF P, et al. The Mars science laboratory (MSL) navigation cameras (navcams)[C]//Lunar and Planetary Science Conference, 2011. [21] LOUISE J. Mars science laboratory sample acquisition, sample processing and handling:Subsystem design and test challenges[C]//Proceedings of the 40th Aerospace Mechanisms Symposium. Washington, D.C.:NASA Kennedy Space Center, 2010:233-247. [22] JEAN P F, THIERRY C, BILL J N. Thermoelectrics:From space power systems to terrestrial waste heat recovery applications[R]. Washington, D.C.:Jet Propulsion Laboratory/California Institute of Technology, 2011. [23] ANDERSON D J, SANKOVIC J, WILT D, et al. NASA's advanced radioisotope power conversion technology development status[C]//Aerospace Conference. Piscataway:IEEE Press, 2007:2934-2953. [24] 王耀兵. 空间机器人[M]. 北京:北京理工大学出版社, 2018:408-410. WANG Y B. Space robots[M]. Beijing:Beijing Institute of Technology Press, 2018:408-410(in Chinese). [25] MICHEL M. Robots for lunar exploration:Present and future[J]. Advance Space Research, 1999, 23(11):1894-1855. [26] 欧阳自远, 李春来, 邹永廖, 等. 深空探测进展与开展我国深空探测的思考[J]. 国际太空, 2003(2):2-6. OUYANG Z Y, LI C L, ZOU Y L, et al. Progress in deep space exploration and thoughts on deep space exploration in China[J]. Space International, 2003(2):2-6(in Chinese). [27] 胡群芳, 陈永杰. 中国掀起月球车研制热[J]. 中国航天, 2004(5):9-10. HU Q F, CHEN Y J. Universities and institutes attracted by lunar rover project[J]. Aerospace China, 2004(5):9-10(in Chinese). [28] NANDY G C, XU Y S. Dynamic model of a gyroscopic wheel[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 1998:2683-2688. [29] 邱雪松. 八轮扭杆摇臂式月球车可展开移动系统研究[D]. 哈尔滨:哈尔滨工业大学, 2007. QIU X S. Research on deployable locomotion system for eight-wheel torsion-bar-rocker lunar rover[D]. Harbin:Harbin Institute of Technology, 2007(in Chinese). [30] KOSHIYAMA A, YAMAFUJI K. Design and control of an all-direction steering type mobile robot[J]. The International Journal of Robotics Research, 1993, 12(5):411-419. [31] 战强, 李伟. 球形移动机器人的研究进展与发展趋势[J]. 机械工程学报, 2019, 55(9):1-17. ZHAN Q, LI W. Research progress and development trend of spherical mobile robots[J]. Journal of Mechanical Engineering, 2019, 55(9):1-17(in Chinese). [32] MUKHERJEE R, MINOR M A, PUKRUSHPAN J T. Simple motion planning strategies for spherobot:A spherical mobile robot[C]//IEEE Conference on Decision and Control. Piscataway:IEEE Press, 1999:2132-2137. [33] 毕贞法, 邓宗全. 两轮并列式月球车的性能及其稳定性分析[J]. 哈尔滨工程大学学报, 2006, 27(4):560-564. BI Z F, DENG Z Q. Performance and stability analysis of lunar rover with two parallel wheels[J]. Journal of Harbin Engineering University, 2006, 27(4):560-564(in Chinese). [34] GRASSER F, DARRIGO A, COLOMBI S, et al. Joe:A mobile, inverted pendulum[J]. IEEE Transactions on Industrial Electronics, 2002, 49(1):107-114. [35] DAVID P A. nBot balancing robot[EB/OL]. (2013-09-14)[2020-02-19]. http://www.geology.smu.edu/dpa-www/robo/nbot/. [36] 颖慧说科技. NASA突破! 将向月球发射洞穴潜水机器人,为人类寻找新的家园[EB/OL]. (2020-04-05)[2020-05-03]. https://www.sohu.com/a/385537180_1206-09310. Speaking Technology by Yinghui. NASA breakthrough! Will launch cave diving robots to the moon to find new homes for humans[EB/OL]. (2020-04-05)[2020-05-03]. https://www.sohu.com/a/385537180_120609310(in Chinese). [37] NESNAS I A D, MATTHEWS J B, ABAD M P, et al. Axel and DuAxel rovers for the sustainable exploration of extreme terrains[J]. Journal of Field Robotics, 2012, 29(4):663-685. [38] 陶建国. 串联多关节悬架六轮月球车移动系统及其关键技术研究[D]. 哈尔滨:哈尔滨工业大学, 2009. TAO J G. Research on six-wheeled rover mobile system with series multi-articulated suspension and its key technology[D]. Harbin:Harbin Institute of Technology, 2009(in Chinese). [39] ROGER B, JAMES A, KARL M, et al. A stewart platform lunar rover[C]//Proceedings of the ASCE Specialty Conference held in Albuquerque, 1994:175-183. [40] ROLLINS E, LUNTZ J, FOESSEL A, et al. Nomad:A demonstration of the transforming chassis[C]//Proceedings of IEEE international Conference on Robotics and Automation. Piscataway:IEEE Press, 1998:611-617. [41] CABROL N A, CHONG-DIAZ G, STOKER C R, et al. Nomad rover field experiment, Atacama Desert, Chile 1. science results overview[J]. Journal of Geophysical Research, 2001, 106(E4):7785-7806. [42] MARTIN J S, SEBASTIAN G B, KRISTIN B, et al. Towards autonomous planetary exploration[J]. Journal of Intelligent & Robotic Systems, 2019, 93(3):461-494. [43] BEKKER M G. The development of a moon rover[J]. Journal of the British Interplanetary Society, 1985, 38(4):537-543. [44] KLARER P. A multitasking behavioral control system for the robotic all terrain lunar exploration rover(RATLER)[C]//Proceedings of Me International Conference on Intelligent Robotics in Field, 1994:717-723. [45] TUNSTEL E. Evolution of autonomous self-righting behaviors for articulated nanorovers[C]//Proceedings of the 5th International Symposium on Artificial Intelligence. Robotics and Automation in Space, 1999:341-346. [46] 高海波, 邓宗全, 胡明, 等. 行星轮式月球车移动系统的关键技术[J]. 机械工程学报, 2005, 41(12):156-161. GAO H B, DENG Z Q, HU M, et al. Key technology of moving system of lunar rover with planetary wheel[J]. Chinese Journal of Mechanical Engineering, 2005, 41(12):156-161(in Chinese). [47] 于文泽. 变质心四轮月球车的设计及其移动性能研究[D]. 哈尔滨:哈尔滨工业大学, 2009. YU W Z. Design of lunar rover with V.C.M and research on performance of mobility[D]. Harbin:Harbin Institute of Technology, 2009(in Chinese). [48] 马传帅, 文桂林, 钟志华, 等. 主动摆臂四轮菱形月球车移动系统越障性能分析与优化[J]. 中国机械工程, 2011, 22(5):550-556. MA C S, WEN G L, ZHONG Z H, et al. Analysis and optimization of climbing-capability of four-wheel-rhombus-arranged mobility system[J]. China Mechanical Engineering, 2011, 22(5):550-556(in Chinese). [49] 马传帅. 主动摆臂四轮菱形月球车移动系统动力学建模与移动性能研究[D]. 长沙:湖南大学, 2010. MA C S. The study of dynamical modeling and mobility performance on the four-wheel-rhombus-arranged (FWRA) mobility system[D]. Changsha:Hunan University, 2010(in Chinese). [50] TAKASHI K, KURODA Y, KUNⅡ Y, et al. Small, light-weight rover "Micro5" for lunar exploration[J]. Acta Astronautica, 2003, 52(1):447-453. [51] 刘方湖, 马培荪, 曹志奎, 等. 五轮铰接式月球机器人的运动学建模[J]. 机器人, 2001, 23(6):481-485, 492. LIU F H, MA P S, CAO Z K, et al. Kinematic modeling of a five-wheel articulated lunar robot[J]. Robot, 2001, 23(6):481-485,492(in Chinese). [52] 刘方湖, 陈建平, 马培荪, 等. 五轮月球机器人及其特性分析[J]. 机械设计, 2001, 18(5):15-18, 40. LIU F H, CHEN J P, MA P S, et al. Five-wheel lunar robot and its characteristics analysis[J]. Machine Design, 2001, 18(5):15-18, 40(in Chinese). [53] HAYATI S, VOLPE R, BACKES P, et al. The rocky 7 rover:A mars science craft prototype[C]//Proceedings of the 1997 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 1997:2458-2460. [54] EDWARD T, TERRY H, HRAND A, et al. FIDO rover field trials as rehearsal for the NASA 2003 mars exploration rovers mission[C]//Proccedings ot the 5th Biannual World Automation Congress.Piscataway:IEEE Press, 2002:320-327. [55] 侯绪研. 六轮摇臂式月球车运动协调控制模式研究[D]. 哈尔滨:哈尔滨工业大学, 2009. HOU X Y. Research on coordinated motion control mode for six-wheeled rocker lunare rover[D]. Harbin:Harbin Institute of Technology, 2009(in Chinese). [56] KEMURDJIAN A, GROMOV V, MISHKINYUK V, et al. Small marsokhod configuration[C]//Proceedings of the 1992 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 1992:165-168. [57] 陶建国, 邓宗全, 高海波, 等. 六圆柱-圆锥轮式月球车的设计[J]. 哈尔滨工业大学报, 2006, 38(1):4-7. TAO J G, DENG Z Q, GAO H B, et al. Design of a lunar rover with six cylinder-conical wheels[J]. Journal of Harbin Institute of Technology, 2006, 38(1):4-7(in Chinese). [58] ROLAND S, PIERRE L, THOMAS E, et al. Innovative design for wheeled locomotion in rough terrain[J]. Robotics and Autonomous Systems, 2002, 40(2-3):151-162. [59] 杨艳春. 虚拟环境下月球车仿真试验系统及其若干关键技术研究[D]. 上海:上海交通大学, 2009. YANG Y C. A virtual environment for lunar rover's simulation and study of its key technologies[D]. Shanghai:Shanghai Jiao Tong University, 2009(in Chinese). [60] 李春明, 苏波, 江磊, 等. 面向行驶安全性的月球车行走系统FDTM总体设计[J]. 机器人技术与应用, 2008(3):10-13. LI C M, SU B, JIANG L, et al. The overall design of the lunar rover walking system FDTM for driving safety[J]. Robot Technique and Application, 2008(3):10-13(in Chinese). [61] THOMAS T, AMBROISE K, ROLAND S. Comprehensive locomotion performance evaluation of all-terrain robots[C]//Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2006:4260-4265. [62] 陈百超. 月球车新型移动系统设计[D]. 长春:吉林大学, 2009. CHEN B C. Design of a new locomotion system for lunar rover[D]. Changchun:Jilin University, 2009(in Chinese). [63] 尚建忠, 罗自荣, 张新访, 等. 双曲柄滑块联动月球车设计及样机研制[J]. 中国机械工程, 2007, 18(3):348-351. SHANG J Z, LUO Z R, ZHANG X F, et al. Design and prototype development of a lunar rover with two-crank-slider suspension[J]. China Mechanical Engineering, 2007, 18(3):348-351(in Chinese). [64] 邵毅敏, 谢更新, 钟志华, 等. 可重复、可重构载人月球车:中国, ZL201610512220.1[P]. 2016-11-09. SHAO Y M, XIE G X, ZHONG Z H, et al. Repeatable and reconfigurable manned lunar rover:China, ZL201610-512220.1[P]. 2016-11-09(in Chinese). [65] 高海波, 张鹏, 邓宗全, 等. 新型八轮月球车悬架的研制[J]. 机械工程学报, 2008, 44(7):85-92. GAO H B, ZHANG P, DENG Z Q, et al. Development of suspension frame of new eight-wheel lunar rover[J]. Chinese Journal of Mechanical Engineering, 2008, 44(7):85-92(in Chinese). [66] 邓宗全, 邱雪松, 胡明, 等. 八轮扭杆摇臂式可展开月球车振动分析[J]. 机器人, 2007, 29(6):534-539, 545. DENG Z Q, QIU X S, HU M, et al. Vibration analysis on the deployable eight-wheel lunar rover with the torsion-bar and rocker structure[J]. Robot, 2007, 29(6):534-539, 545(in Chinese). [67] 禹鑫燚, 高海波, 邓宗全. 崎岖地形中关节式月球车姿态估计数值求解方法[J]. 航空学报, 2009, 30(8):1521-1530. YU X Y, GAO H B, DENG Z Q. Numerical Solving method of kinematic observers estimation of articulated rovers on rough terrain[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(8):1521-1530(in Chinese). [68] BARES J, WHITTAKER W L. Configuration of autonomous walker for extreme terrain[J]. The International Journal of Robotics Research, 1993, 12(6):535-550. [69] KROTKOV E, SIMMONS R. Planning and control for autonomous walking with the ambler planetary rover[J]. The International Journal of Robotics Research, 1996, 15(2):155-180. [70] 刘方湖. 管道形轮腿式月球探测机器人及其运动特性的研究[D]. 上海:上海交通大学, 2002. LIU F H. Research on pipe-shaped wheel-legged lunar exploration robot and its motion characteristics[D]. Shanghai:Shanghai Jiao Tong University, 2002(in Chinese). [71] GOERNER M, WIMBOECK T, HIRZINGER G. The DLR Crawler:Evaluation of gaits and control of an actively compliant six-legged walking robot[J]. Industrial Robot:An International Journal, 2009, 36(4):344-351. [72] 韩亮亮, 陈萌, 张崇峰, 等. 月面服务机器人研究进展及发展设想[J]. 载人航天, 2018, 24(3):313-320. HAN L L, CHEN M, ZAHNG C F, et al. Research progress and development conception of lunar service robot[J]. Manned Spaceflight, 2018, 24(3):313-320(in Chinese). [73] BELTER D, SKRZYPCZYNSKI P. Rough terrain mapping and classification for foothold selection in a walking robot[J]. Journal of Field Robotics, 2011, 28(4):497-528. [74] ROENNAU A, HEPPNER G, PFOTZER L, et al. Lauron V:Optimized leg configuration for the design of a bio-inspired walking robot[C]//Proceeding of International Conference on Climbing and Walking Robots, 2013:563-570. [75] 赵杰, 张赫, 刘玉斌, 等. 六足机器人HITCR-I的研制及步行实验[J]. 华南理工大学学报(自然科学版), 2012, 40(12):17-23. ZHAO J, ZHANG H, LIU Y B, et al. Development and walking experiment of hexapod robot HITCR-I[J]. Journal of South China University of Technology (Natural Science Edition), 2012, 40(12):17-23(in Chinese). [76] ZHANG H, LIU Y B, ZHAO J, et al. Development of a bionic hexapod robot for walking on unstructured terrain[J]. Journal of Bionic Engineering, 2014, 11(2):176-187. [77] 刘宇飞. 面向非预知地形的六足机器人足力优化及滑移抑制研究[D]. 哈尔滨:哈尔滨工业大学, 2019. LIU Y F. Research on foot force optimization and slippage suppression of hexpod robot under unknown terrain[D]. Harbin:Harbin Institute of Technology, 2009(in Chinese). [78] PAN Y, GAO F, QI C K, et al. Human-tracking strategies for a six-legged rescue robot based on distance and view[J]. Chinese Journal of Mechanical Engineering, 2016, 29(2):219-230. [79] 李舜酩, 廖庆斌. 星球探测车的研发状况综述[J]. 航空制造技术, 2006(11):68-71. LI S M, LIAO Q B. Overview of the research and development status of the planetary exploration vehicle[J]. Aeronautical Manufacturing Technology, 2006(11):68-71(in Chinese). [80] KEMURDJIAN A L, KHAKHANOV Y A. Planet rovers and space machinery:Simulators for terrestrial testing[C]//6th International Conference and Exposition on Engineering, Construction, and Operations in Space. Piscataway:IEEE Press, 1998:102-110. [81] KEMURDJIAN A L. Planet rover as all object of the engineering design work[C]//Proceeding of the 1998 IEEE International Conference on Robotics& Automation. Piscataway:IEEE Press, 1998:140-145. [82] 朴春日, 颜国正, 王志武, 等. 一种履带式机器人设计及其越障分析[J]. 现代制造工程, 2013(3):24-27. PU C R, YAN G Z, WANG Z W, et al. Design of a tracked robot and analysis of its obstacle-climbing[J]. Modern Manufacturing Engineering, 2013(3):24-27(in Chinese). [83] SACHIKO W, HITOSHI S, SHIN I N. Design and mobility evaluation of tracked lunar vehicle[J]. Journal of Terramechanics, 2009, 46:105-114. [84] 李允旺, 葛世荣, 朱华, 等. 四履带双摆臂机器人越障机理及越障能力[J]. 机器人, 2010, 32(2):157-165. LI Y W, GE S R, ZHU H, et al. Obstacle-surmounting mechanism and capability of four-track robot with two swing arms[J]. Robot, 2010, 32(2):157-165(in Chinese). [85] KEIJI N, SEIGA K, YOSHITO O, et al. Redesign of rescue mobile robot Quince[C]//IEEE International Symposium on Safety, Security, and Rescue Robotics. Piscataway:IEEE Press, 2011:13-18. [86] 王田苗, 邹丹, 陈殿生. 可重构履带机器人的机构设计与控制方法实现[J]. 北京航空航天大学学报, 2005, 31(7):705-708. WANG T M, ZOU D, CHEN D S. Mechanism design and control method of reconfigurable tracked robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(7):705-708(in Chinese). [87] 庄皓岚. 特种环境移动机器人控制系统与越障研究[D]. 上海:上海交通大学, 2013. ZHUANG H L. Control system of specialized moble robot and obstacle performance study[D]. Shanghai:Shanghai Jiao Tong University, 2013(in Chinese). [88] KAWAKAMI A, TORⅡ A, MOTOMURA K, et al. SMC rover:Planetary rover with transformable wheels[C]//8th International Symposium on Experimental Robotics, 2003:498-506. [89] KAWAKAMI A, TORⅡ A, HIROSE S. Design of SMC rover:Development and basic experiments of arm equipped single wheel rover[C]//IEEE Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2001:96-101. [90] WHEELER D W, VYTAS S, DAVID M, et al. Development and field testing of the footfall planning system for the ATHLETE robots[J]. Journal of Field Robotics, 2012, 29(3):483-505. [91] HARRISON D A, AMBROSE R, BLUETHMANN B, et al. Next generation rover for lunar exploration[C]//IEEE Aerospace Conference. Piscataway:IEEE Press, 2007:1196-1201. [92] SREENIVASAN S V, WILCOX B H. Stability and traction control of an actively actuated micro-rover[J]. Journal of Robotic Systems, 1994, 11(6):487-502. [93] 刘方湖, 马培荪, 陈建平. 管道形轮腿式月球探测机器人[J]. 机械工程学报, 2002, 38(11):42-48. LIU F H, MA P S, CHEN J P, et al. Pipeline-shaped wheel-legged lunar exploration robot[J]. Chinese Journal of Mechanical Engineering, 2002, 38(11):42-48(in Chinese). [94] 李聪. 模块化可重构六支链轮腿式月面机器人设计与分析[D]. 重庆:重庆大学, 2019. LI C. Design and analysis of modular reconfigurable six branched wheel-legged lunar robot[D]. Chongqing:Chongqing University, 2019(in Chinese). [95] FIORINI P, COSMA C, CONFENTE M. Localization and sensing for hopping robots[J]. Autonomous Robots, 2005, 18(18):185-200. [96] BURKICK J, FIORINI P. Minimalist jumping robots for celestial exploration[J]. International Journal of Robotics Research, 2003, 22(7):653-666. [97] 莫小娟, 葛文杰, 赵东来, 等. 微小型跳跃机器人研究现状综述[J]. 机械工程学报, 2019, 55(15):109-123. MO X J, GE W J, ZHAO D L, et al. Review:Research status of miniature jumping robot[J]. Journal of Mechanical Engineering, 2019, 55(15):109-123(in Chinese). [98] ROLF A L, DIMI A, DAVID W. Control strategies for a multi-legged hopping robot[C]//IEEE/RSJ International Conference on Intelligent Robot and Systems. Piscataway:IEEE Press, 2008:1519-1524. [99] CHENG Y H. Viability of tensegrity robots in space exploration[D]. Berkeley:University of California at Berkeley, 2014. [100] DUBOWSKY S, IAGNEMMA K, LIBERATORE S, et al. A concept mission:Microbots for large-scale planetary surface and subsurface exploration[C]//Space Technology and Applications, 2005:1449-1458. [101] YOSHIMITSU T, SASAKI S, YANAGISAWA M, et al. Scientific capability of minerva rover in hayabusa asteroid mission[C]//Lunar and Planetary Science Conference, 2004. [102] LI B, DENG Q, LIU Z C. A spherical hopping robot for exploration in complex environments[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway:IEEE Press, 2009:402-407. [103] 柏龙, 葛文杰, 陈晓红, 等. 用于行星探测的跳跃机器人研究[J]. 机器人, 2009, 31(4):311-319. BAI L, GE W J, CHEN X H, et al. Research on hopping robot for planetary exploration[J]. Robot, 2009, 31(4):311-319(in Chinese). [104] 柏龙, 葛文杰, 陈晓红, 等. 星面探测仿生间歇式跳跃机器人设计及实现[J]. 机器人, 2012, 34(1):32-37. BAI L, GE W J, CHEN X H, et al. Design and implementation of a bio-inspired intermittent hopping robot for planetary surface exploration[J]. Robot, 2012, 34(1):32-37(in Chinese). [105] LIU G H, LIN H Y, LIN H Y, et al. A bio-inspired hopping kangaroo robot with an active tail[J]. Journal of Bionic Engineering, 2014, 11(4):541-555. |