[1] |
HONKANEN A, ADDEN A, DA SILVA FREITAS J, et al. The insect central complex and the neural basis of navigational strategies[J]. Journal of Experimental Biology, 2019, 222(S1):1-15.
|
[2] |
OMER D B, MAIMON S R, LAS L, et al. Social place-cells in the bat hippocampus[J]. Science, 2018, 359(6372):218-224.
|
[3] |
MAYA G S, LIORA L, YOSSI Y, et al. Spatial cognition in bats and rats:From sensory acquisition to multiscale maps and navigation[J]. Nature Reviews Neuroscience, 2015, 16(2):94-108.
|
[4] |
CHUNG S-J, PARANJAPE A A, DAMES P, et al. A survey on aerial swarm robotics[J]. IEEE Transactions on Robotics, 2018, 34(4):837-855.
|
[5] |
熊骏, 熊智, 刘建业, 等. 一种基于置信传播和协同信息筛选的无人机编队协同导航方法[C]//2018年无人载体导航与控制技术发展及应用学术研讨峰会. 北京:中国惯性技术学会, 2018:42-46. XIONG J, XIONG Z, LIU J Y, et al. Cooperative navigation method based on belief propagation and cooperative message screening[C]//Proceedings of the Development and Application of Unmanned Vehicle Navigation and Control Technology. Beijing:Chinese Society of Inertial Technology, 2018:42-46(in Chinese).
|
[6] |
许建新, 熊智, 陈明星, 等. 多无人机辅助定位信标的区域导航定位算法[J]. 航空学报, 2018, 39(10):322172. XU J X, XIONG Z, CHEN M X, et al. Regional navigation algorithm assisted by locations of multi uavs[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10):322172(in Chinese).
|
[7] |
许晓伟, 赖际舟, 吕品, 等. 多无人机协同导航技术研究现状及进展[J]. 导航定位与授时, 2017, 4(4):1-9. XU X W, LAI J Z, LV P, et al. a literature review on the research progress of the cooperative navigation technology for multiple UAVs[J]. Navigation Positioning & Timing, 2017, 4(4):1-9(in Chinese).
|
[8] |
孙瑶洁, 熊智, 李文龙, 等. 无人机集群类脑导航系统综述[J]. 航空计算技术, 2019, 49(3):130-134. SUN Y J, XIONG Z, LI W L, et al. Research status and progress of brain-like formation navigation system[J]. Aeronautical Computing Technique, 2019, 49(3):130-134(in Chinese).
|
[9] |
CHIALVO D R, MILLONAS M M. The biology and technology of intelligent autonomous agents[M]. Heidelberg:Springer, 1995:439-450.
|
[10] |
BUSH D, BARRY C, MANSON D, et al. Using grid cells for navigation[J]. Neuron, 2015, 87(3):507-520.
|
[11] |
YUAN M, TIAN B, SHIM V A, et al. An entorhinal-hippocampal model for simultaneous cognitive map building[C]//Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.
|
[12] |
EDVARDSEN V. Navigating by decoding grid cells[D]. Norway:Norwegian University of Science and Technology, 2019:155-201.
|
[13] |
刘建业, 杨闯, 熊智, 等. 无人机类脑吸引子神经网络导航技术[J]. 导航定位与授时, 2019, 6(5):52-60. LIU J Y, YANG C, XIONG Z, et al. Attractor neural network-based brain-inspired navigation technology for UAV[J]. Navigation Positioning & Timing, 2019, 6(5):52-60(in Chinese).
|
[14] |
HYMAN J M, ZILLI E A, PALEY A M, et al. Working memory performance correlates with prefrontal-hippocampal theta interactions but not with prefrontal neuron firing rates[J]. Frontiers in Integrative Neuroscience, 2010, 4(2):1-13.
|
[15] |
STEFFEN L, REICHARD D, WEINLAND J, et al. Neuromorphic stereo vision:A survey of bio-inspired sensors and algorithms[J]. Frontiers in Neurorobotics, 2019, 13(28):1-20.
|
[16] |
TIAN S, EBERT F, JAYARAMAN D, et al. Manipulation by feel:Touch-based control with deep predictive models[EB/OL]. (2019-03-11)[2019-07-09]. https://arxiv.org/abs/1903.04128.
|
[17] |
HATWELL Y, STRERI A, GENTAZ E. Touching for knowing:Cognitive psychology of haptic manual perception[M]. Benjamins:John Benjamins Publishing, 2003:1-20.
|
[18] |
FEI F, TU Z, ZHANG J, et al. Learning extreme hummingbird maneuvers on flapping wing robots[EB/OL]. (2019-02-25)[2019-07-09].https://arxiv.org/abs/1902.09626.
|
[19] |
WU W C, SCHENATO L, WOOD R J, et al. Biomimetic sensor suite for flight control of a micromechanical flying insect:Design and experimental results[C]//IEEE International Conference on Robotics & Automation. Piscataway, NJ:IEEE Press, 2003.
|
[20] |
SRINIVASAN M V. An image-interpolation technique for the computation of optic flow and egomotion[J]. Biological Cybernetics, 1994, 71(5):401-415.
|
[21] |
VARGA M, ZUFFEREY J C, HEITZ G H M, et al. Evaluation of control strategies for fixed-wing drones following slow-moving ground agents[J]. Robotics & Autonomous Systems, 2015, 72:285-294.
|
[22] |
BASIRI M, SCHILL F S, FLOREANO D, et al. Audio-based localization for swarms of micro air vehicles[C]//IEEE International Conference on Robotics & Automation. Piscataway, NJ:IEEE Press, 2014:4279-4734.
|
[23] |
BAO X, GJORGIEVA E, SHANAHAN L K, et al. Grid-like neural representations support olfactory navigation of a two-dimensional odor space[J]. Neuron, 2019, 102(3):1-10.
|
[24] |
BADDELEY B, GRAHAM P, PHILIPPIDES A, et al. Holistic visual encoding of ant-like routes:Navigation without waypoints[J]. Adaptive Behavior, 2011, 19(1):3-15.
|
[25] |
CARTWRIGHT B A, COLLETT T S. Landmark maps for honeybees[J]. Biological Cybernetics, 1987, 57(1-2):85-93.
|
[26] |
MOORE T, ZIRNSAK M. Neural mechanisms of selective visual attention[J]. Annual Review of Neuroscience, 2017, 18(1):193-222.
|
[27] |
HUBEL D H, WIESEL T N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[J]. The Journal of physiology, 1962, 160(1):106-154.
|
[28] |
MANCINI M, COSTANTE G, VALIGI P, et al. Towards domain independence for learning-based monocular depth estimation[J]. IEEE Robotics & Automation Letters, 2017, 2(3):1-8.
|
[29] |
ROSENBAUM D, BESSE F, VIOLA F, et al. Learning models for visual 3D localization with implicit mapping[EB/OL]. (2018-12-12)[2019-07-09]. https://arxiv.org/abs/1807.03149.
|
[30] |
KAUFMANN E, LOQUERCIO A, RANFTL R, et al. Deep drone racing:Learning agile flight in dynamic environments[EB/OL]. (2018-10-09)[2019-07-09]. https://arxiv.org/abs/1806.08548.
|
[31] |
PALMER S E. Modern theories of gestalt perception[J]. Mind & Language, 2010, 5(4):289-323.
|
[32] |
MCNAUGHTON B L, BATTAGLIA F P, OLE J, et al. Path integration and the neural basis of the cognitive map[J]. Nature Reviews Neuroscience, 2006, 7(8):663-678.
|
[33] |
TAMAS M, STAN F, KE C, et al. Bayesian integration of information in hippocampal place cells[J]. Plos One, 2015, 10(8):e0136128.
|
[34] |
BURAK Y, FIETE I R. Accurate path integration in continuous attractor network models of grid cells[J]. PLoS Computational Biology, 2009, 5(2):1-16.
|
[35] |
BALL D, HEATH S, WILES J, et al. OpenRatSLAM:An open source brain-based SLAM system[J]. Autonomous Robots, 2013, 34(3):149-176.
|
[36] |
KANITSCHEIDER I, FIETE I. Training recurrent networks to generate hypotheses about how the brain solves hard navigation problems[C]//Proceedings of the Advances in Neural Information Processing Systems, 2017:4529-4538.
|
[37] |
CUEVA C J, WEI X X. Emergence of grid-like representations by training recurrent neural networks to perform spatial localization[EB/OL]. (2018-03-21)[2019-07-09]. https://arxiv.org/abs/1803.07770.
|
[38] |
BANINO A, BARRY C, URIA B, et al. Vector-based navigation using grid-like representations in artificial agents[J]. Nature, 2018, 557(7705):429.
|
[39] |
HWU T, KRICHMAR J, ZOU X. A complete neuromorphic solution to outdoor navigation and path planning[C]//2017 IEEE International Symposium on Circuits and Systems. Piscataway, NJ:IEEE Press, 2017:1-4.
|
[40] |
TANG G, MICHMIZOS K P. Gridbot:An autonomous robot controlled by a spiking neural network mimicking the brain's navigational system[C]//International Conference on Neuromorphic Systems, 2018:4-11.
|
[41] |
BURGESS N, JACKSON A, HARTLEY T, et al. Predictions derived from modelling the hippocampal role in navigation[J]. Biological Cybernetics, 2000, 83(3):301-312.
|
[42] |
EDVARDSEN V. Goal-directed navigation based on path integration and decoding of grid cells in an artificial neural network[J]. Natural Computing, 2016, 18(1):13-27.
|
[43] |
GOLDSCHMIDT D, MANOONPONG P, DASGUPTA S. A neurocomputational model of goal-directed navigation in insect-inspired artificial agents[J]. Frontiers in Neurorobotics, 2017, 11(20):1-17.
|
[44] |
LAMPLE G, CHAPLOT D S. Playing FPS games with deep reinforcement learning[EB/OL]. (2018-01-29)[2019-07-09]. https://arxiv.org/abs/1609.05521v2.
|
[45] |
MIROWSKI P, PASCANU R, VIOLA F, et al. Learning to navigate in complex environments[EB/OL]. (2017-01-13)[2019-07-09]. https://arxiv.org/abs/1611.03673v3.
|
[46] |
ZHU Y, MOTTAGHI R, KOLVE E, et al. Target-driven visual navigation in indoor scenes using deep reinforcement learning[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2017:3357-3364.
|
[47] |
SAVINOV N, RAICHUK A, MARINIER R, et al. Episodic curiosity through reachability[EB/OL]. (2019-05-09)[2019-07-09]. https://arxiv.org/abs/1810.02274v5.
|
[48] |
FINN C, RAJESWARAN A, KAKADE S, et al. Online meta-learning[EB/OL]. (2019-07-03)[2019-07-09]. https://arxiv.org/abs/1902.08438v4.
|
[49] |
LOQUERCIO A, MAQUEDA A I, BLANCO C R D, et al. Dronet:Learning to fly by driving[J]. IEEE Robotics & Automation Letters, 2018, 3(2):1088-1095.
|
[50] |
TOBIN J, FONG R, RAY A, et al. Domain randomization for transferring deep neural networks from simulation to the real world[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ:IEEE Press, 2017.
|
[51] |
MIROWSKI P, GRIMES M K, MALINOWSKI M, et al. Learning to Navigate in Cities Without a Map[EB/OL]. (2019-01-10)[2019-07-09]. https://arxiv.org/abs/1804.00168v3.
|
[52] |
MADL T, FRANKLIN S, CHEN K, et al. A computational cognitive framework of spatial memory in brains and robots[J]. Cognitive Systems Research, 2018, 47:147-172.
|
[53] |
ARONOV D, NEVERS R, TANK D W. Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit[J]. Nature, 2017, 543(7647):719.
|
[54] |
QUIROGA R Q. Concept cells:The building blocks of declarative memory functions[J]. Nature Reviews Neuroscience, 2012, 13(8):587-597.
|
[55] |
BICANSKI A, BURGESS N. A computational model of visual recognition memory via grid cells[J]. Current Biology, 2019, 29(3):979-990.
|
[56] |
TANG H, YAN R, TAN K C. Cognitive navigation by neuro-inspired localization, mapping, and episodic memory[J]. IEEE Transactions on Cognitive and Developmental Systems, 2018, 10(3):751-761.
|
[57] |
FLEISCHER J G, EDELMAN G M. Brain-based devices[J]. IEEE Robotics & Automation Magazine, 2009, 16(3):33-41.
|
[58] |
SABO C, CHISHOLM R, PETTERSON A, et al. A lightweight, inexpensive robotic system for insect vision[J]. Arthropod Structure & Development, 2017, 46(5):689-702.
|
[59] |
HWU T, ISBELL J, OROS N, et al. A self-driving robot using deep convolutional neural networks on neuromorphic hardware[C]//2017 International Joint Conference on Neural Networks. Piscataway, NJ:IEEE Press, 2017:635-641.
|
[60] |
KREISER R, PIENROJ P, RENNER A, et al. Pose estimation and map formation with spiking neural networks:towards neuromorphic SLAM[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2018:2159-2166.
|
[61] |
PALOSSI D, CONTI F, BENINI L. An open source and open hardware deep learning-powered visual navigation engine for autonomous nano-UAVs[EB/OL]. (2019-05-10)[2019-07-09]. https://arxiv.org/abs/1905.04166.
|
[62] |
PEI J, DENG L, SONG S, et al. Towards artificial general intelligence with hybrid Tianjic chip architecture[J]. Nature, 2019, 572(7767):106.
|
[63] |
JIMENEZ R C, SOUSA R D, JOHNSON J H, et al. A model for foraging ants, controlled by spiking neural networks and double pheromones[EB/OL]. (2015-09-18)[2019-07-09]. https://arxiv.org/abs/1507.08467v3.
|
[64] |
BONNET F, MILLS R, SZOPEK M, et al. Robots mediating interactions between animals for interspecies collective behaviors[J]. Science, 2019, 4(28):eaau7897.
|
[65] |
DUVELLE É, JEFFERY K J. Social spaces:Place cells represent the locations of others[J]. Current Biology, 2018, 28(6):271-273.
|
[66] |
GEVA-SAGIV M, ROMANI S, LAS L, et al. Hippocampal global remapping for different sensory modalities in flying bats[J]. Nature Neuroscience, 2016, 19(7):952.
|
[67] |
WOHLGEMUTH M W, CHAO I, MOSS C F. 3D Hippocampal place field dynamics in free-flying echolocating bats[J]. Frontiers in Cellular Neuroscience, 2018, 12(270):1-16.
|
[68] |
NGUYEN T T, NGUYEN N D, NAHAVANDI S. Deep reinforcement learning for multi-agent systems:A review of challenges, solutions and applications[EB/OL]. (2019-02-06)[2019-07-09]. https://arxiv.org/abs/1812.11794v2.
|
[69] |
VLADIMIR G I, DARRYN J R. Cognitive supervisor for an autonomous swarm of robots[J]. Intelligent Control and Automation, 2017, 8(01):44-65.
|
[70] |
熊智, 刘建业. 智能自主无人机多源信息融合导航理论与类脑导航技术发展建议[C]//科技2035-导航新技术与学科发展论坛, 2019. XIONG Z, LIU J Y. Multi-source information fusion navigation theory of intelligent autonomous UAV and development suggestions of brain-like navigation technology[C]//Science and Technology 2035-Forum on New Navigation Technologies, 2019(in Chinese).
|
[71] |
张佳龙, 闫建国, 张普. 基于反步推演法的多机编队队形重构控制研究[J]. 航空学报, 2019, 40(11):323177. ZHANG J L, YAN J G, ZHANG P. Study on multi-UAV formation forming control based on backing-stepping method[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11):323177(in Chinese).
|
[72] |
MILFORD M, WYETH G. Mapping a suburb with a single camera using a biologically inspired SLAM system[J]. IEEE Transactions on Robotics, 2008, 24(5):1038-1053.
|