[1] 邹冀华, 刘志存, 范玉青. 大型飞机部件数字化对接装配技术研究[J]. 计算机成制造系统, 2007, 13(7):1367-1373. ZOU J H, LIU Z C, FAN Y Q. Large-size airplane parts digital assembly technology[J]. Computer Integrated Manufacturing Systems, 2007, 13(7):1367-1373(in Chinese). [2] 黄翔, 李泷杲, 陈磊, 等. 民用飞机大部件数字化对接关键技术[J]. 航空制造技术, 2010(3):54-56. HUANG X, LI L G, CHEN L, et al. Key technologies of digital final assembly for civil aircraft[J]. Aeronautical Manufacturing Technology, 2010(3):54-56(in Chinese). [3] AUSTIN W. Assembly automation takes off in aerospace industry[EB/OL]. (2015-04-02)[2021-09-05]. https://www.assemblymag.com/articles/92790-assembly-autom-ation-takes-off-in-aerospace-industry. [4] HARTMANN J, MEEKER C, WELLER M. Determinate assembly of tooling allows concurrent design of airbus wings and major assembly fixtures[J]. SAE Technical Paper, 2004(1):28-32. [5] ZETU D, BANERJEE P, THOMPSON D. Extended-range hybrid tracker and applications to motion and camera tracking in manufacturing systems[J]. IEEE Transactions on Robotics and Automation, 2000, 16(3):281-293. [6] MULLER R, ESSER M, VETTE M. Reconfigurable handling systems as an enabler for large components in mass customized production[J]. Journal of Intelligent Manufacturing, 2013, 24(5):977-990. [7] MCKEOWN C, WEBB P. A reactive reconfigurable tool for aerospace structures[J]. Assembly Automation, 2011, 31(4):334-343. [8] JAYAWEERA N, WEBB P. Adaptive robotic assembly of compliant aero-structure components[J]. Robotics and Computer-Integrated Manufacturing, 2007, 23(2):180-194. [9] MILLAR A, KIHLMAN H. Reconfigurable flexible tooling for aerospace wing assembly[R]. 2009. [10] TOM P. Airbus A330/A340 assembly 0185[EB/OL]. (2008-05-07)[2021-09-05]. https://www.flickr.com/photos/news46/2498803863. [11] BROCTJE A. The art of precious joining[EB/OL]. (2018-08-31)[2021-09-05]. https://broetje-automation.tw/cn/equipment/assembly-systems/fuestation/#flac. [12] 王建华. 飞机总装对接技术[J]. 航空制造技术, 2010(2):32-35. WANG J H. Aircraft assembly docking technology[J]. Aeronautical Manufacturing Technology, 2010(2):32-35(in Chinese). [13] 许国康. 飞机大部件数字化对接技术[J]. 航空制造技术, 2009(24):42-45. XU G K. Digital docking technology for large aircraft parts[J]. Aeronautical Manufacturing Technology, 2009(24):42-45(in Chinese). [14] NAING S, CORBETT J. Feature based design for jigless assembly[D]. Cranfield:Cranfield University, 2004. [15] 李强, 张志博, 申定贤, 等. 新一代大型运载火箭总装数字化对接技术综述[J]. 科技与创新, 2019(4):100-101. LIQ, ZHANG Z B, SHEN D X, et al. Overview of the digital docking technology in the final assembly of the new generation large carrier rocket[J]. Technology and Innovation, 2019(4):100-101(in Chinese). [16] 郭恩明. 国外飞机柔性装配技术[J]. 航空制造技术, 2005(9):8-32. GUO E M. Foreign aircraft flexible assembly technology[J].Aeronautical Manufacturing Technology, 2005(9):28-32(in Chinese). [17] AMY K. SpaceX delays dragon demo, raises $50M from investors[EB/OL]. (2010-11-08)[2021-09-05]. https://spacenews.com/spacex-delays-dragon-demo-raises-50m-investors/. [18] 郭志敏, 蒋君侠, 柯映林. 基于POGO柱三点支撑的飞机大部件调姿方法[J]. 航空学报, 2009, 30(7):1319-1324. GUO Z M, JIANG J X, KE Y L. Posture alignment for large aircraft parts based on three POGO sticks distr-ibuted support[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(7):1319-1324(in Chinese). [19] 郭志敏, 蒋君侠, 柯映林. 一种精密三坐标POGO柱设计与精度研究[J]. 浙江大学学报, 2009, 43(9):1649-1654. GUO Z M, JIANG J X, KE Y L. Design and accuracy for POGO stick with three-axis[J]. Journal of Zhejiang University, 2009,43(9):1649-1654(in Chinese). [20] 蒋君侠, 陈琪, 方强, 等. 三坐标定位器系统动态特性分析和实验[J]. 计算机集成制造系统, 2009, 15(5):1004-1009. JIANG J X, CHEN Q, FANG Q, et al. Analysis and experimental test on dynamic characteristic of 3-axis positioner system[J]. Computer Integrated Manufacturing Systems, 2009, 15(5):1004-1009(in Chinese). [21] 梅中义, 朱三山, 杨鹏. 飞机数字化柔性装配中的数字测量技术[J]. 航空制造技术, 2011(17):44-49. MEI Z Y, ZHU S S, YANG P. Digital measurement of aircraft digital flexible assembly[J]. Aeronautical Manufacturing Technology, 2011(17):72-75(in Chinese). [22] 郭洪杰. 飞机大部件自动对接装配技术[J]. 航空制造技术, 2013(13):72-75. GUO H J. Automated joint assembly technology for large structure of aircraft[J]. Assembly Technology, 2013(13):72-75(in Chinese). [23] 陈根良. 操作机构尺寸与变形误差传递的统一建模方法研究[D]. 上海:上海交通大学, 2014. CHEN G L. Aunified error transmission model of robot manipulators considering both kinematic and deformation errors[D]. Shanghai:Shanghai Jiao Tong University, 2014(in Chinese). [24] 王皓, 陈根良, 黄顺舟, 等. 面向最优匹配位置的大部件自动对接装配综合评价指标[J]. 机械工程学报, 2017, 53(23):137-146. WANG H, CHEN G L, HUANG S Z, et al. Evaluation index framework of optimal matching position for large components automatic assembly[J]. Journal of Mechanical Engineering, 2017, 53(23):137-146(in Chinese). [25] 李锦程. 基于力控制的飞机大部件多移载工装移动搬运系统设计[D]. 上海:上海交通大学, 2020. LI J C. Design of the mobile handling system of the large aircraft parts based on the force control[D]. Shanghai:Shanghai Jiao Tong University, 2020(in Chinese). [26] 周炜. 飞机自动化装配工业机器人精度补偿方法与实验研究[D]. 南京:南京航空航天大学, 2012. ZHOU W. Compensation method of industrial robot accuracy and experimental research for aircraft automated assembly[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012(in Chinese). [27] 郭洪杰. 大型飞机柔性装配技术[J]. 航空制造技术, 2010(18):52-54. GUO H J. Flexible assembly technology for large aircraft[J]. Assembly Technology, 2010(18):52-54(in Chinese). [28] 梁涛. 飞机柔性装配误差累积与容差分析技术研究[D]. 沈阳:沈阳航空航天大学, 2013. LIANG T. Research on error stack-up and tolerance analysis for flexible assembly[D]. Shenyang:Shenyang Aerospace University, 2013(in Chinese). [29] 李绣峰, 刘桂雄, 谢存禧, 等. 机器人螺纹柔性装配中螺纹可装配性的几何分析[J]. 光学精密工程, 1998, 6(5):48-54. LI X F, LIU G X, XIE C X, et al. The assembling ability geometric analysis of flexible[J]. Optics and Precision Engineering, 1998, 6(5):48-54(in Chinese). [30] 林嘉. 基于子结构的飞机机体柔性薄壁件装配精度分析方法研究[D]. 上海:上海交通大学, 2018. LIN J. Compliant assembly variation analysis of aeronautical thin-walled structure based on the substructuring technique[D].Shanghai:Shanghai Jiao Tong University, 2018(in Chinese). [31] 朱澄澄. 面向遥操作的力反馈人机交互技术研究[D].南京:东南大学, 2018. ZHU D D. Research on human-computer interaction technology with force feedback for teleoperation[D].Nanjing:Southeast University, 2018(in Chinese). [32] 邹鹏. 工业机器人柔顺轴孔装配方法研究[D]. 杭州:浙江大学, 2020. ZOU P. Research on compliance peg-in-hole assembly method of industrial robot[D]. Hangzhou:Zhejiang University, 2020(in Chinese). [33] 周彬. 基于一维力感知的航天特种阀阀芯装配方法研究[D]. 苏州:苏州大学, 2019. ZHOU B. Research on aerospace special valve spool assembly based on one-dimensional force sensing[D].Suzhou:Soochow University, 2019(in Chinese). [34] 吴遥. 基于六维力传感器的柔顺装配理论与实验研究[D]. 秦皇岛:燕山大学, 2012. WU Y. Theory and experiment research of compliance assemble based on six-component force sensor[D].Qinhuangdao:Yanshan University, 2012(in Chinese). [35] 吴丹, 赵安安, 陈恳, 等. 协作机器人及其在航空制造中的应用综述[J]. 航空制造技术, 2019, 62(10):24-34. WU D, ZHAO A A, CHEN K, et al. A survey of collaborative robot for aircraft manufacturing application[J]. Aeronautical Manufacturing Technology, 2019, 62(10):24-34(in Chinese). [36] ZHAW. ECHORD:Human-robot collaboration in airplane assembly[EB/OL]. (2015-11-29)[2021-07-06]. https://www.zhaw.ch/en/engineering/institutes-centres/ims/robotics-automation/echord/. [37] MUELLER R, VETTE M, DEENEN A, et al. Improving working conditions in aircraft productions using human robot-collaboration in a collaborative riveting process[R]. 2017. [38] MUIJS L, SNIJDERS M. Collaborative robot applications at GKN Aerospace's Fokker business[R]. 2017. [39] MEIßNER D W I J, SCHMATZ M S F, BEUß D I F, et al. Smart human-robot-collaboration in mechanical joining processes[J]. Procedia Manufacturing, 2018, 24:264-270. [40] JODY M. Airbus automates A320 structural assembly[EB/OL]. (2019-11-15)[2021-09-06]. https://www.engineering.com/story/airbus-automates-a320-structural-assembly. [41] 布仁, 孙刚, 胡瑞钦, 等. 航天器机械臂柔性力控辅助装配方法[J]. 航天器环境工程, 2014, 31(4):430-435. BU R, SUN G, HU R Q, et al. Flexible force control on robot arm for spacecraft assembly[J]. Spacecraft Environment Engineering, 2014, 31(4):430-435(in Chinese). [42] 王杰鹏, 谢永权, 宋涛, 等. 力觉交互控制的机械臂精密位姿控制技术[J]. 机械设计与研究, 2019, 35(4):47-52. WANG J P, XIE Y Q, SONG T, et al. A precise robot control technology for satellite assembly based on force interaction control[J]. Machine Design & Research, 2019, 35(4):47-52(in Chinese). [43] 汤海洋, 纪柱, 李论. 基于力反馈牵引力导引的机器人辅助装配技术研究[J]. 制造业自动化, 2021, 43(3):9-13. TANG H Y, JI Z, LI L. Research on robot assisted assembly technology based on force feedback traction guidance[J]. Manufacturing Automation, 2021, 43(3):9-13(in Chinese). [44] 刘仁伟, 徐晓辉, 谢永权, 等. 基于机械臂辅助的卫星柔顺装配技术研究[J]. 机电工程, 2020, 37(5):532-536. LIU R W, XU X H, XIE Y Q, et al. Compliant assembly technology of satellite assisted by robot arm[J]. Mechanical & Electrical Engineering Magazine, 2020, 37(5):532-536(in Chinese). [45] 冯子明. 飞机数字化装配技术[M]. 北京:航空工业出版社, 2015:10-50. FENG Z M. Aircraft digital assembly technology[M]. Beijing:Aviation Industry Press, 2015:10-50(in Chinese). [46] MARGUET B, RIBERE B. Measurement-assisted assembly applications on airbus final assembly lines[R]. 2003. [47] WILLIAMS G, CHALUPA E, BILLIEU R, et al. Gaugeless tooling[R]. 1998. [48] RVSCHER O, MAYLÄNDER H. Automated alignment and marry-up of aircraft fuselage sections with a final assembly Line[R]. 2001. [49] NORRIS G, WAGNER M. Modern Boeing jetliners[M]. MBI Publishing Company, 1999:133. [50] CHANG E K, VANCE J M. Collision detection an-d part interaction modeling to facilitate immersive virtual assembly methods[J]. Journal of Computing and Information Science in Engineering, 2004, 4(2):83-90. [51] 张秋月, 安鲁陵. 虚拟现实和增强现实技术在飞机装配中的应用[J]. 航空制造技术, 2017(11):40-45. ZHANG Q Y, AN L L. Application of virtual reality and augment reality in aircraft assembly[J]. Aeronautical Manufacturing Technology, 2017(11):40-45(in Chinese). [52] AGVERA M, GINGERICH E. Airbus group unit testia to supply augmented reality system to spirit aerosystems[EB/OL]. (2016-04-11)[2021-06-05].https://www.airbus.com/newsroom/pressreleases/en/2016/04/Airbus-Group-Unit-Testia-to-Supply-To-Spirit-AeroSystems.html. [53] ROTTEMBOURG D. Did you know:MiRA, airbus' augmented reality application is made available by Testia[EB/OL]. (2021-02-08)[2021-06-05]. https://www.testia.com/news/mira-airbus-available-through-testia-smartmixedreality/. [54] DRAFTING M. Airbus A380:a challenge of moun-ting large scale[EB/OL]. (2008-07-05)[2021-08-25] https://www.interempresas.net/Medicion/Articulos/21947-Airbus-A380-un-reto-de-montaje-a-gran-escala.html. [55] ADVANCED I T. AIT final assembly systems for 787[EB/OL]. (2015-08-11)[2021-09-05] https://www.aint.com/home. [56] 郭洪杰. 浅谈数字化测量技术在飞机装配中的应用[J]. 航空制造技术, 2011(21):26-29. GUO H J. Talking about theapplication of digital measurement technology in aircraft assembly[J]. Aeronautical Manufacturing Technology, 2011(21):26-29(in Chinese). [57] ADVANCED I T. Boeing 787 final assembly[EB/OL]. (2015-08-26)[2021-08-25] https://www.aint.com/projects/assembly_alignment_projects/boeing_787_final_assembly. [58] 曲巍崴, 董辉跃, 柯映林. 机器人辅助飞机装配制孔中位姿精度补偿技术[J]. 航空学报, 2011, 32(10):1951-1960. QU W W, DONG H Y, KE Y L. Pose accuracy com-pensation technology in robot-aided aircraft assembly drilling process[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1951-1960(in Chinese). [59] CHENG L, WANG Q, LI J, et al. A posture evaluation method for a large component with thermal deformation and its application in aircraft assembly[J]. Assembly Automation, 2014, 34(3):275-284. [60] 联想中国. 助力智慧中国, 不唠嗑, 咱实干![EB/OL]. (2019-04-04)[2021-09-05]. https://www.sohu.com/a/306024761_120056399 LENOVO CHINA. Help smart China, don't chat, let's do it![EB/OL]. (2019-04-04)[2021-09-05]. https://www.sohu.com/a/306024761_120056399(in Chinese). [61] 毛世杰. 晨星AR大飞机辅助装配系统研发及应用[M]. 北京:北京联想软件有限公司, 2019. MAO S J. Development and application of morning star AR large aircraft auxiliary assembly system[M]. Beijing:Beijing Lenovo Software Co., Ltd., 2019(in Chinese). [62] 尹旭悦, 范秀敏, 王磊, 等. 航天产品装配作业增强现实引导训练系统及应用[J]. 航空制造技术, 2018, 61(Z1):48-53. YI X Y, FAN X M, WANG L, et al. Augmented reality guidance training system for aerospace product assembly operations and its applications[J].Aeronautical Manufacturing Technology, 2018, 61(Z1):48-53(in Chinese). [63] 唐健钧, 叶波, 耿俊浩. 飞机装配作业AR智能引导技术探索与实践[J]. 航空制造技术, 2019, 62(8):22-27. TANG J J, YE B, GENG J H. Exploration and practice of aircraft assembly AR intelligent pilot technology[J]. Aeronautical Manufacturing Technology, 2019, 62(8):22-27(in Chinese). [64] DEVLIEG R. High-accuracy robotic drilling/milling of 737 inboard flaps[J]. SAE International Journal of Aerospace, 2011, 4(2):1373-1379. [65] 冯华山, 秦现生, 王润孝. 航空航天制造领域工业机器人发展趋势[J]. 航空制造技术, 2013(19):32-37. FENG H S, QIN X S, WANG R X. Developingtrend of industrial robot in aerospace manufacturing industry[J]. Aeronautical Manufacturing Technology, 2013(19):32-37(in Chinese). [66] MURPHY C N, YATES J A. The International Organization for Standardization (ISO):global governance through voluntary consensus[M]. 2009. [67] 付乐, 武睿, 赵杰. 协作机器人安全规范:ISO/TS 15066的演变与启示[J]. 机器人, 2017, 39(4):532-540. FU L, WU R, ZHAO J. The evolution and enlight-enment of safety specification of cooperative robots:ISO/TS 15066[J]. Robot, 2017, 39(4):532-540(in Chinese). [68] 汪满新, 黄田. 1T2R3自由度并联机构拓扑结构综合[J]. 机械工程学报, 2015, 51(17):1-7. WANG M X, HUANG T, Type synthesis of 1T2R 3-DOF parallel mechanism[J]. Journal of Mechanical Engineering, 2015, 51(17):1-7(in Chinese). [69] XIE F, LIU X J, YOU Z, et al. Type synthesis of 2T1R-type parallel kinematic mechanisms and the application in manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30(1):1-10. [70] 王友渔, 黄田. Tricept机械手静刚度解析建模方法[J]. 机械工程学报, 2008, 44(8):13-19. WANG Y Y, HUANG T. Analytical method for stiffness modeling for the Tricept robot[J]. Journal of Mechanical Engineering, 2008, 44(8):13-19(in Chinese). [71] OLAZAGOITIA J L, WYATT S. New PKM Tricept T9000 and its application to flexible manufacturing at aerospace industry[R]. 2007. [72] 马政伟, 李卫东, 万敏, 等. 飞机侧壁部件装配调姿机构的设计与分析[J]. 北京航空航天大学学报, 2014, 40(2):280-284. MA Z W, LI W D, WAN M,et al. Design and analysis of flexible fixture for aircraft side panels[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(2):280-284(in Chinese). [73] 潘国威, 陈文亮, 王珉. 应用于飞机装配的并联机构技术发展综述[J]. 航空学报, 2019, 40(1):522572. PAN G W, CHEN W L, WANG M. A review of parallel kinematic mechanism technology for aircraft assembly[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(01):522572(in Chinese). [74] NICK J. Photos:These snake-like robot arms look like something out of sci-fi movie[EB/OL]. (2011-11-29)[2021-09-05]. https://www.businessinsider.com/photos-check-out-this-crazy-british-snake-robot-2011-11. [75] 丁韬. TORRESMILL和TORRESTOOL系统蒙皮切边钻铣床及柔性夹具装置[J]. 航空制造技术, 2007(2):108-109. DING T. TorresMill and Torrestool systems skin trimming drilling and milling machine and flexible fixture device[J]. AeronauticalManufacturing Technology, 2007(2):108-109(in Chinese). [76] 白新宇, 王思聪. 飞机壁板类组件柔性工装系统研究[J]. 制造业自动化, 2014, 36(22):133-135. BAI X Y, WANG S C. Research on flexible tooling system of aircraft panelcomponents[J]. Manufacturing Automation, 2014, 36(22):133-135(in Chinese). [77] 屈力刚, 陈国涛, 苏长青, 等. 飞机壁板真空吸盘式柔性装配工装系统设计[J]. 沈阳航空航天大学学报, 2014, 31(6):36-41. QU L G, CHEN G T, SU C Q, et al. Design in flexible assembly tooling system of vacuum chunk for aircraft panel[J]. Journal of Shenyang Aerospace University, 2014, 31(6):36-41(in Chinese). [78] 朱明华. 飞机部件多点柔性支撑系统研究与开发[D].南京:南京航空航天大学, 2011. ZHU M H. Research and development on multi-pointflexible supporting tooling system for aircraft components[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011(in Chinese). [79] 陈正涛. 贮箱封闭环缝焊接内撑折展夹具的设计与分析[D]. 上海:上海交通大学, 2017. CHEN Z T. Design and analysis of a deployable inner support fixture for fuel tank's final welding process[D].Shanghai:Shanghai Jiao Tong University, 2017(in Chinese). [80] 葛世玉. 大型薄壁筒段立式对接技术研究及实验验证[D]. 上海:上海交通大学, 2019. GE S Y, Research on vertical assembly technology of large thin-walled cylinder[D].Shanghai:Shanghai Jiao Tong University, 2019(in Chinese). [81] 袁红璇. 飞机结构件连接孔制造技术[J]. 航空制造技术, 2007(1):96-99. YUAN H X. Manufacturing technology of connecting hole in aircraft structures[J]. Aeronautical Manufacturing Technology, 2007(1):96-99(in Chinese). [82] GREGORY P. Boeing confronts challenges of 777 automation push[EB/OL]. (2016-07-06)[2021-07-06].https://www.ainonline.com/aviation-news/air-transport/2016-07-05/boeing-confronts-challenges-777-automation-push. [83] DOMINIC G. Boeing abandons its failed fuselage robots on the 777X, handing the job back to machinists[EB/OL]. (2019-11-15)[2021-09-06]. https://www.seattletimes.com/business/boeing-aerospace/boeing-abandons-its-failed-fuselage-robots-on-the-777x-handing-the-job-ba-ck-to-machinists/. [84] 陈东东. AGV式移动机器人在飞机装配中二次制孔位置精度研究[D]. 杭州:浙江大学, 2017. CHEN D D. Research on reproducible hole position accuracy of AGV mobile robot in aircraft assembly[D].Hangzhou:Zhejiang University, 2017(in Chinese). [85] 王鑫.无损检测系统搭载平台结构设计及关键技术研究[D]. 合肥:合肥工业大学, 2018. WANG X. Research on thestructure design and key technology of the nondestructive testing system carrying platform[D]. Hefei:Hefei University of Technology, 2018(in Chinese). [86] 王浩吉, 杨永帅, 赵彦微. 重载AGV的应用现状及发展趋势[J]. 机器人技术与应用, 2019(5):20-24. WANG H J, YANG Y S, ZHAO Y W, Application status and development trend of heavy-duty AGV[J].Robot Technique and Application, 2019(5):20-24(in Chinese). [87] FORI A. Aerospace AGV systems[EB/OL]. (2017-03-01)[2021-07-06]. https://www.foriauto.com/Our-Products/Automated-Material-Handling/High-Capacity-AGVs/Aerospace-Assembly. [88] FORI A. Vertical wing assembly system[EB/OL]. (2017-03-01)[2021-07-06]. https://www.foriauto.com/Our-Products/Automated-Material-Handling/High-Capacity-AGVs/Vertical-Wing-Assembly. [89] 陶永, 高赫, 王田苗, 等. 移动工业机器人在飞机装配生产线中的应用研究[J]. 航空制造技术, 2021, 64(5):32-41, 67. TAO Y, GAO H, WANG T M, et al. Research on the application of mobile industrial robot in aircraft assembly line[J]. Aeronautical Manufacturing Technology, 2021, 64(5):32-41, 67(in Chinese). [90] 王国磊, 王宁涛, 陈恳. 面向整机的机器人喷涂系统回顾与展望[J]. 航空制造技术, 2016(16):76-80. WANG G L, WANG N T, CHEN K. Review and prospect of robot spraying system for the whole machine[J]. Aeronautical Manufacturing Technology, 2016(16):76-80(in Chinese). [91] 宋袁曾, 陈洁, 毛景. 大型飞机整机涂装自动化实施探讨与展望[J]. 航空制造技术, 2016(10):52-56. SONG Y Z, CHEN J, MAO J. Discussion and prospect on the implementation of painting automation for large aircraft[J]. Aeronautical Manufacturing Technology, 2016(10):52-56(in Chinese). [92] 陈雁, 邵君奕, 张传清, 等. 复杂管道喷涂系统研制[J]. 机械设计与制造, 2009(11):1-3. CHEN Y, SHAO J Y, ZHANG C Q, et al. Development of spraying system for complex duct[J]. Manufacturing Automation, 2009(11):1-3(in Chinese). [93] 赵宏剑, 王刚, 张波, 等. 飞机尾翼自动喷涂系统[J]. 制造业自动化, 2013, 35(2):153-156. ZHAO H J, WANG G, ZHANG B, et al. The wings of the aircraft automatic spraying system[J]. Manufacturing Automation, 2013, 35(2):153-156(in Chinese). |