[1] HOLLAND J H. Signals and boundaries:Building blocks for complex adaptive systems[M]. Cambridge:MIT Press, 2014. [2] 姚富强, 张余, 柳永祥. 电磁频谱安全与控制[J]. 指挥与控制学报, 2015, 1(3):278-283. YAO F Q, ZHANG Y, LIU Y X. Security and control for electromagnetic spectrum[J]. Journal of Command and Control, 2015, 1(3):278-283(in Chinese). [3] LIANG Y C. Dynamic spectrum management:From cognitive radio to blockchain and artificial intelligence[M]. Singapore:Springer Singapore, 2020. [4] CLARK B, GUNZINGER M. Winning the airwaves:Regaining America's dominance in the electromagnetic spectrum[R]. Center of Strategic and Budgetary Assessments (CSBA), 2015. [5] CLARK B, GUNZINGER M, SLOMAN J. Winning in the gray zone:Using electromagnetic warfare to regain escalation dominance[R]. Center of Strategic and Budgetary Assessments (CSBA), 2017. [6] CLARK B, MCNAMARA M W, WALTON A T. Winning the invisible war:Gaining an enduring U.S. advantage in the electromagnetic spectrum[R]. Center of Strategic and Budgetary Assessments (CSBA), 2019. [7] 冯志勇, 张平, 郎保真, 等. 认知无线网络理论与关键技术[M]. 北京:人民邮电出版社, 2011. FENG Z Y, ZHANG P, LANG B Z, et al. Cognitive wireless network theory and key technology[M]. Beijing:Posts & Telecom Press, 2011(in Chinese). [8] SHENG M, LI X, WANG X, et al. Topology control with successive interference cancellation in cognitive radio networks[J]. IEEE Transactions on Communications, 2017, 65(1):37-48. [9] YIN L G, JIANG C N, JIANG C J, et al. Collaborative spectrum managements and sharing in coordinated space, terrestrial and ocean networks[J]. IEEE Network, 2020, 34(1):182-187. [10] TARVER C, TONNEMACHER M, CHANDRASEKH-AR V, et al. Enabling a "Use-or-Share" framework for PAL-GAA sharing in CBRS networks via reinforcement learning[J]. IEEE Transactions on Cognitive Communications and Networking, 2019, 5(3):716-729. [11] JOHN L. Commercial deployment for Huawei's 4G/5G flash dynamic spectrum sharing[EB/OL]. (2020-02-21)[2020-09-10]. https://www.accesswire.com/577361/Commercial-Deployment-for-Huaweis-4G5G-Flash-Dynamic-Spectrum-Sharing. [12] 工业和信息化部.中华人民共和国无线电频率划分规定[M].北京:人民邮电出版社,2014. Ministry of Industry and Information Technology. People's republic of china regulations on radio allocation[M]. Beijing:Posts & Telecom Press, 2014(in Chinese). [13] CAVE M, DOYLE C, WEBB W. Essentials of modern spectrum management[M]. Cambridge:Cambridge University Press, 2007. [14] 王沙飞.人工智能与电磁频谱战[N].中国信息化周报,2018-05-14(16). WANG S F. Artificial intelligence and electromagnetic spectrum warfare[N]. China Information Weekly, 2018-05-14(16) (in Chinese). [15] KELLY H. DARPA's spectrum collaboration challenge:Hulking out, helping out and exploring the limits of ai-based spectrum sharing[EB/OL]. (2019-10-24)[2020-09-10].https://www.rcrwireless.com/20191024/spectrum/darpas-spectrum-collaboration-challenge-hulking-out-helping-out-exploring-limits-of-ai-spectrum-management?utm_campaign=20191024%20RCRenewsThurs&utm_medium=email&utm_source=Eloqua. [16] NTIA Office. Spectrum management[EB/OL].[2020-09-13]. https://www.ntia.doc.gov/legacy/osmhome/training/training.html. [17] DEFENSE U. Coalition Joint Spectrum Management and Planning Tool (CJSMPT)[EB/OL]. (2006-04-01)[2020-09-10]. https://defense-update.com/20060401_coalition-joint-spectrum-management-and-planning-tool-cjsmpt.html. [18] Global Electromagnetic Spectrum Information System (GEMSIS)[EB/OL].[2020-09-13].https://www.disa.mil/~/media/Files/DISA/Services/DSO/GEMSISSpectrumCapabilities.pdf. [19] 吴启晖, 丁国如, 孙佳琛. 电磁频谱数据挖掘理论与应用[M]. 北京:科学出版社, 2020. WU Q H, DING G R, SUN J C. Electromagnetic spectrum data mining theories and applications[M]. Beijing:Science Press, 2020(in Chinese). [20] DING G, WU Q, ZHANG L, et al. An amateur drone surveillance system based on the cognitive Internet of Things[J]. IEEE Communications Magazine, 2018, 56(1):29-35. [21] CABRIC D S, MISHRA S M, BRODERSEN R W. Implementation issues in spectrum sensing for cognitive radios[C]//Conference on Signals, Systems & Computers. Piscataway:IEEE Press, 2004:772-776. [22] DING G, WANG J, WU Q, et al. Robust spectrum sensing with crowd sensors[J]. IEEE Transactions on Communications, 2014, 62(9):3129-3143. [23] YUCEK T, ARSLAN H. A survey of spectrum sensing algorithms for cognitive radio applications[J]. IEEE Communications Surveys and Tutorials, 2009, 11(1):116-130. [24] DING G, WU F, WU Q, et al. Robust online spectrum prediction with incomplete and corrupted historical observations[J]. IEEE Transactions on Vehicular Technology, 2017, 66(9):8022-8036. [25] 任峰. 频谱态势感知数据挖掘技术研究[D]. 北京:北京邮电大学, 2015. REN F. Data mining technology of spectrum sensing data[D]. Beijing:Beijing University of Posts and Telecommunications, 2015(in Chinese). [26] SUN J, WANG J, CHEN J, et al. Clustering analysis for internet of spectrum devices:Real-world data analytics and applications[J]. IEEE Internet of Things Journal, 2020, 7(5):4485-4496. [27] 陈敏. 基于无线电监测的电磁目标时空信息挖掘[D].成都:电子科技大学, 2019. CHEN M. Spatio-temporal information mining of electromagnetic targets based on radio monitoring[D]. Chengdu:University of Electronic Science and Technology of China, 2019(in Chinese). [28] 张莉. 频谱数据挖掘算法研究与应用[D]. 北京:北京邮电大学, 2016. ZHANG L. Data mining algorithm of spectrum sensing data[D]. Beijing:Beijing University of Posts and Telecommunications, 2016(in Chinese). [29] LIU X, SHI R, HEE B, et al. Detection on abnormal usage of spectrum by electromagnetic data mining[C]//2019 IEEE 4th International Conference on Big Data Analytics (ICBDA). Piscataway:IEEE Press, 2019. [30] GIANNAKIS G B, SHEN Y, KARANIKOLAS G V. Topology identification and learning over graphs:Accounting for nonlinearities and dynamics[J]. Proceedings of the IEEE, 2018, 106(5):787-807. [31] MOORE M G, DAVENPORT M A. Analysis of wireless networks using Hawkes processes[C]//2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Piscataway:IEEE Press, 2016:1-5. [32] LAGHATE M, CABRIC D. Learning wireless networks' topologies using asymmetric granger causality[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1):233-247. [33] DING G, JIAO Y, WANG J, et al. Spectrum inference in cognitive radio networks:Algorithms and applications[J]. IEEE Communications Surveys and Tutorials, 2018, 20(1):150-182. [34] 李彤, 苗成林, 吕军, 等. 频谱用户行为特征建模与分析[J]. 装甲兵工程学院学报, 2019, 33(1):87-92. LI T, MIAO C L, LÜ J, et al. Research on modeling of spectrum behavior characteristics[J]. Journal of Academy of Armored Force Engineering, 2019, 33(1):87-92(in Chinese). [35] WILLKOMM D, MACHIRAJU S, BOLOT J, et al. Primary user behavior in cellular networks and implications for dynamic spectrum access[J]. IEEE Communications Magazine, 2009, 47(3):88-95. [36] DING G, WANG J, WU Q, et al. On the limits of predictability in real-world radio spectrum state dynamics:From entropy theory to 5G spectrum sharing[J]. IEEE Communications Magazine, 2015, 53(7):178-183. [37] XING X, JING T, CHENG W, et al. Spectrum prediction in cognitive radio networks[J]. IEEE Wireless Communications, 2013, 20(2):90-96. [38] LI H. Reconstructing spectrum occupancies for wideband cognitive radio networks:A matrix completion via belief propagation[C]//International Conference on Communications, 2010:1-6. [39] YIN S, CHEN D, ZHANG Q, et al. Mining spectrum usage data:A large-scale spectrum measurement study[J]. IEEE Transactions on Mobile Computing, 2012, 11(6):1033-1046. [40] KIM S J, GIANNAKIS G B. Cognitive radio spectrum prediction using dictionary learning[C]//Global Communications Conference. Piscataway:IEEE Press, 2013:3206-3211. [41] YU L, CHEN J, DING G. Spectrum prediction via long short term memory[C]//2017 3rd IEEE International Conference on Computer and Communications (ICCC). Piscataway:IEEE Press, 2017. [42] YU L, WANG Q, GUO Y, et al. Spectrum availability prediction in cognitive aerospace communications:A deep learning perspective[C]//2017 Cognitive Communications for Aerospace Applications Workshop (CCAA), 2017:1-4. [43] WANG J, TANG J, XU Z, et al. Spatiotemporal modeling and prediction in cellular networks:A big data enabled deep learning approach[C]//IEEE INFOCOM 2017-IEEE Conference on Computer Communications. Piscataway:IEEE Press, 2017:1-9. [44] YU L, CHEN J, ZHANG Y, et al. Deep spectrum prediction in high frequency communication based on temporal-spectral residual network[J]. China Communications, 2018, 15(9):25-34. [45] ZHUANG F, QI Z, DUAN K, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2021, 109(1):43-76. [46] LIN F, CHEN J, SUN J, et al. Cross-band spectrum prediction based on deep transfer learning[J]. China Communications, 2020, 17(2):66-80. [47] MASONTA M T, MZYECE M, NTLATLAPA N, et al. Spectrum decision in cognitive radio networks:A survey[J]. IEEE Communications Surveys and Tutorials, 2013, 15(3):1088-1107. [48] LI Z, GUAN L, LI C, et al. A secure intelligent spectrum control strategy for future THz mobile heterogeneous networks[J]. IEEE Communications Magazine, 2018, 56(6):116-123. [49] LAUGHLIN C. Spectrum vulnerabilities, Part I:Systematic and technological challenges to identifying and understanding vulnerabilities[J]. the Internet of Things, 2019, 2(4):6-7. [50] PELECHRINIS K, ILIOFOTOU M, KRISHNAMURT-HY S V, et al. Denial of service attacks in wireless networks:The case of jammers[J]. IEEE Communications Surveys and Tutorials, 2011, 13(2):245-257. [51] THERESA S, KULKARNI J A A. Shannon meets von Neumann:A minimax theorem for channel coding in the presence of a jammer[J]. IEEE Transactions on Information Theory, 2020, 66(5):2842-2859. [52] 姚富强. 通信抗干扰工程与实践[M].第2版. 北京:电子工业出版社,2012. YAO F Q. Communication anti-jamming engineering and practice[M]. 2nd.ed. Beijing:Publishing House of Electronics Industry, 2012(in Chinese). [53] 张春磊,杨小牛. 认知电子战与认知电子战系统研究[J]. 中国电子科学研究院学报,2014,9(6):551-555. ZHANG C L, YANG X N. Research on the cognitive electronic warfare and cognitive electronic warfare system[J]. Journal of China Academy of Electronics and Information Technology, 2014, 9(6):551-555(in Chinese). [54] 李少谦, 程郁凡, 董彬虹,等. 智能抗干扰通信技术研究[J]. 无线电通信技术, 2012, 38(1):5-8. LI S Q, CHENG Y F, DONG B H, et al. Research on intelligent anti-jam communication techniques[J]. Radio Communications Technology, 2012, 38(1):5-8(in Chinese). [55] YANG D, XUE G, ZHANG J, et al. Coping with a smart jammer in wireless networks:A stackelberg game approach[J]. IEEE Transactions on Wireless Communications, 2013, 12(8):4038-4047. [56] XIAO L, LI Y, DAI C, et al. Reinforcement learning-based NOMA power allocation in the presence of smart jamming[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4):3377-3389. [57] HAN G, XIAO L, POOR H V, et al. Two-dimensional anti-jamming communication based on deep reinforcement learning[C]//2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway:IEEE Press, 2017:2087-2091. [58] YAO F, JIA L. A collaborative multi-agent reinforcement learning anti-jamming algorithm in wireless networks[J]. IEEE Wireless Communications Letters, 2019, 8(4):1024-1027. [59] FCC's Rosenworcel talks up 6G?[EB/OL].[2020-09-13]. https://www.multichan-nel.com/news/fccsrosenworcel-talks-up-6 g. [60] KOTOBI K, BILEN S G. Secure blockchains for dynamic spectrum access:A decentralized database in moving cognitive radio networks enhances security and user access[J]. IEEE Vehicular Technology Magazine, 2018, 13(1):32-39. [61] BAYHAN S, ZUBOW A, GAWLOWICZ P, et al. Smart contracts for spectrum sensing as a service[J]. IEEE Transactions on Cognitive Communications and Networking, 2019, 5(3):648-660. [62] JIAO Y, WANG P, NIYATO D, et al. Auction mechanisms in cloud/fog computing resource allocation for public blockchain networks[J]. IEEE Transactions on Parallel and Distributed Systems, 2019, 30(9):1975-1989. [63] 杨健, 陈曦, 丁国如, 等. 基于区块链的频谱设备网络中防御拜占庭攻击的分布式共识机制[J]. 通信学报, 2020, 41(3):1-16. YANG J, CHEN X, DING G R, et al. Blockchain-driven distributed consensus mechanism in defensing Byzantine attack for the Internet of spectrum device[J].Journal on Communications, 2020, 41(3):1-16(in Chinese). [64] QIU J, GRACE D, DING G, et al. Blockchain-based secure spectrum trading for unmanned-aerial-vehicle-assisted cellular networks:An operator's perspective[J]. IEEE Internet of Things Journal, 2020, 7(1):451-466. [65] BASH B A, GOECKEL D, TOWSLEY D, et al. Hiding information in noise:Fundamental limits of covert wireless communication[J]. IEEE Communications Magazine, 2015, 53(12):26-31. [66] LIU Z, LIU J, ZENG Y, et al. Covert wireless communications in IoT systems:Hiding information in interference[J]. IEEE Wireless Communications, 2018, 25(6):46-52. [67] BASH B A, GOECKEL D, TOWSLEY D, et al. Limits of reliable communication with low probability of detection on AWGN channels[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(9):1921-1930. [68] SHAHZAD K, ZHOU X, YAN S, et al. Achieving covert wireless communications using a full-duplex receiver[J]. IEEE Transactions on Wireless Communications, 2018, 17(12):8517-8530. [69] ZHENG T, WANG H, NG D W, et al. Multi-antenna covert communications in random wireless networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(3):1974-1987. [70] COTTON S L, SCANLON W, MADAHAR B, et al. Millimeter-wave soldier-to-soldier communications for covert battlefield operations[J]. IEEE Communications Magazine, 2009, 47(10):72-81. [71] YAN S, ZHOU X, HU J, et al. Low probability of detection communication:Opportunities and challenges[J]. IEEE Wireless Communications, 2019, 26(5):19-25. |