[1] HE B J, ZHANG J H, CAI G B. Research on vacuum plume and its effects[J]. Chinese Journal of Aeronautics, 2013, 26(1):27-36. [2] GENOVESE J. Rapid estimation of hydrazine exhaust plume interaction:AIAA-1978-1091[R]. Reston:AIAA, 1978. [3] GRABE M, SOARES C. Status and future of research on plume induced contamination[C]//70th International Astronautical Congress, 2019. [4] ZHANG M X, CAI G B, TANG Z Y, et al. Experimental and numerical research on the diversion effect of a conic flame deflector for a lunar module ascent stage[J]. Journal of Aerospace Engineering, 2016, 29(5):04016021. [5] ZHANG M X, CAI G B, HE B J, et al. Experimental and numerical analysis of the heat flux characteristic of the plume of a 120-N thruster[J]. Science China Technological Sciences, 2019, 62(10):1854-1860. [6] HE X Y, HE B J, CAI G B. Simulation of rocket plume and lunar dust using DSMC method[J]. Acta Astronautica, 2012, 70:100-111. [7] HE B J, HE X Y, ZHANG M X, et al. Plume aerodynamic effects of cushion engine in lunar landing[J]. Chinese Journal of Aeronautics, 2013, 26(2):269-278. [8] CAI G B, LING G L, HE B J. An introduction to the novel vacuum plume effects experimental system[J]. Science China Technological Sciences, 2016, 59(6):953-960. [9] CAI G, REN X, HE B, et al. The dependence of transport coefficient on spatial dimensions and grid shape in the direct simulation Monte Carlo based on Green-Kubo relation[J]. Physics of Fluids, 2020, 32(4):042006. [10] 叶青, 饶炜, 刘锋, 等. 火星着陆发动机羽流与火壤的相互作用[J]. 航空学报, 2022, 43(3):626557. YE Q, RAO W, LIU F, et al. Interaction between engine plume and Martian soil during Mars landing[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3):626557 (in Chinese). [11] 李锦, 耿湘人, 陈坚强, 等. DSMC量子动理学模型在火星再入流动中的应用[J]. 航空学报, 2020, 41(7):123240. LI J, GENG X R, CHEN J Q, et al. Application of DSMC quantum kinetic model in re-entry flow of Mars[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7):123240 (in Chinese). [12] CHINNAPPAN A K, KUMAR R, ARGHODE V K. Modeling of dusty gas flows due to plume impingement on a lunar surface[J]. Physics of Fluids, 2021, 33(5):053307. [13] GAIER JR. The effects of lunar dust on EVA systems during the Apollo missions:NASA/TM-2005-213610/REV1[R]. Washington, D.C.:NASA, 2007. [14] CALLE C I, BUHLER C R, MCFALL J L, et al. Particle removal by electrostatic and dielectrophoretic forces for dust control during lunar exploration missions[J]. Journal of Electrostatics, 2009, 67(2-3):89-92. [15] FLASIŃSKI M. Introduction to artificial intelligence[M]. Berlin:Springer, 2016. [16] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge:The MIT Press, 2016. [17] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016:770-778. [18] YOUNG T, HAZARIKA D, PORIA S, et al. Recent trends in deep learning based natural language processing[J]. IEEE Computational Intelligence Magazine, 2018, 13(3):55-75. [19] DENG L, HINTON G, KINGSBURY B. New types of deep neural network learning for speech recognition and related applications:an overview[C]//2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway:IEEE Press, 2013:8599-8603. [20] WANG H J, YANG Z, ZHOU W G, et al. Online scheduling of image satellites based on neural networks and deep reinforcement learning[J]. Chinese Journal of Aeronautics, 2019, 32(4):1011-1019. [21] LI M H, HU T J. Deep learning enabled localization for UAV autolanding[J]. Chinese Journal of Aeronautics, 2021, 34(5):585-600. [22] HU Z J, GAO X G, WAN K F, et al. Relevant experience learning:a deep reinforcement learning method for UAV autonomous motion planning in complex unknown environments[J]. Chinese Journal of Aeronautics, 2021, 34(12):187-204. [23] ZHANG H, JIAO Z X, SHANG Y X, et al. Ground maneuver for front-wheel drive aircraft via deep reinforcement learning[J]. Chinese Journal of Aeronautics, 2021, 34(10):166-176. [24] 何磊, 钱炜祺, 董康生, 等. 基于卷积神经网络的结冰翼型气动特性建模研究[J]. 航空学报, (2021-11-12)[2022-04-30]. https://kns.cnki.net/kcms/detail/11.1929.V.20211110.1515.002.html. HE L, QIAN W Q, DONG K S, et al. Aerodynamic characteristics modeling of iced airfoil based on convolution neural networks[J]. Acta Aeronautica et Astronautica Sinica, (2021-11-12)[2022-04-30]. https://kns.cnki.net/kcms/detail/11.1929.V.20211110.1515.002.html (in Chinese). [25] 李左飙, 温风波, 唐晓雷, 等. 基于深度学习的单排孔气膜冷却性能预测[J]. 航空学报, 2021, 42(4):524331. LI Z B, WEN F B, TANG X L, et al. Prediction of single-row hole film cooling performance based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524331 (in Chinese). [26] 黄旭星, 李爽, 杨彬, 等. 人工智能在航天器制导与控制中的应用综述[J]. 航空学报, 2021, 42(4):524201. HUANG X X, LI S, YANG B, et al. Spacecraft guidance and control based on artificial intelligence:Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524201 (in Chinese). [27] 任峰, 高传强, 唐辉. 机器学习在流动控制领域的应用及发展趋势[J]. 航空学报, 2021, 42(4):524686. REN F, GAO C Q, TANG H. Machine learning for flow control:Applications and development trends[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524686 (in Chinese). [28] SEKAR V, JIANG Q, SHU C, et al. Fast flow field prediction over airfoils using deep learning approach[J]. Physics of Fluids, 2019, 31(5):057103. [29] HUI X Y, BAI J Q, WANG H, et al. Fast pressure distribution prediction of airfoils using deep learning[J]. Aerospace Science and Technology, 2020, 105:105949. [30] WU H Z, LIU X J, AN W, et al. A generative deep learning framework for airfoil flow field prediction with sparse data[J]. Chinese Journal of Aeronautics, 2022, 35(1):470-484. [31] 王怡星, 韩仁坤, 刘子扬, 等. 流体力学深度学习建模技术研究进展[J]. 航空学报, 2021, 42(4):524779. WANG Y X, HAN R K, LIU Z Y, et al. Progress of deep learning modeling technology for fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524779 (in Chinese). [32] 叶舒然, 张珍, 王一伟, 等. 基于卷积神经网络的深度学习流场特征识别及应用进展[J]. 航空学报, 2021, 42(4):524736. YE S R, ZHANG Z, WANG Y W, et al. Progress in deep convolutional neural network based flow field recognition and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524736 (in Chinese). [33] 奕建苗, 邓枫, 覃宁, 等. 快速预测跨音速流场的深度学习方法[J]. 航空学报, (2022-03-01)[2022-04-30]. https://kns.cnki.net/kcms/detail/11.1929.V.20220228.1120.018.html. YI J M, DENG F, QIN N, et al. Fast prediction of transonic flow field using deep learning method[J]. Acta Aeronautica et Astronautica Sinica, (2022-03-01)[2022-04-30].https://kns.cnki.net/kcms/detail/11.1929.V.20220228.1120.018.html (in Chinese). [34] 战庆亮, 白春锦, 张宁, 等. 基于时程卷积自编码的机翼绕流特征识别方法[J]. 航空学报, (2021-12-13)[2022-04-30]. https://kns.cnki.net/kcms/detail/11.1929.V.20211209.1732.004.html. ZHAN Q L, BAI C J, ZHANG N, et al. Feature extraction method of flow around wing based on time history convolutional autoencoder[J]. Acta Aeronautica et Astronautica Sinica, (2021-12-13)[2022-04-30]. https://kns.cnki.net/kcms/detail/11.1929.V.20211209.1732.004.html (in Chinese). [35] 张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4):524689. ZHANG W W, KOU J Q, LIU Y L. Prospect of artificial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524689 (in Chinese). [36] YANG Z, TANG Z Y, CAI G B, et al. Development of a coupled NS-DSMC method for the simulation of plume impingement effects of space thrusters[J]. Thermophysics and Aeromechanics, 2017, 24(6):835-847. [37] CAI G B, ZHENG H R, LIU L H, et al. Three-dimensional particle simulation of ion thruster plume impingement[J]. Acta Astronautica, 2018, 151:645-654. [38] ZHENG H R, CAI G B, LIU L H, et al. Three-dimensional particle simulation of back-sputtered carbon in electric propulsion test facility[J]. Acta Astronautica, 2017, 132:161-169. [39] ZHANG B Y, CAI G B, ZHENG H R, et al. Analysis of influencing parameters in ion thruster plume simulation[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2021, 235(10):1158-1169. [40] LIU L H, CAI G B, ZHENG H R, et al. Measurement of the momentum accommodation coefficient for the interactions between electric thruster plume and a solid surface[J]. Physics of Plasmas, 2020, 27(5):053511. [41] BIRD G. Molecular gas dynamics[R]. Washington, D.C.:NASA, 1976. [42] LUDWIG J. Image convolution[R]. Portland:Portland State University, 2013. [43] GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]//Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, 2011:315-323. [44] IOFFE S, SZEGEDY C. Batch normalization:Accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning. New York:Association for Computing Machinery, 2015:448-456. [45] LOSHCHILOV I, HUTTER F. Fixing weight decay regularization in Adam[DB/OL]. arXiv preprint:1711.05101,2018. [46] GUO X X, LI W, IORIO F. Convolutional neural networks for steady flow approximation[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:Association for Computing Machinery, 2016:481-490. [47] RIBEIRO M D, REHMAN A, AHMED S, et al. DeepCFD:Efficient steady-state laminar flow approximation with deep convolutional neural networks[DB/OL]. arXiv preprint:2004.08826, 2020. [48] OSHER S, FEDKIW R, PIECHOR K. Level set methods and dynamic implicit surfaces[J]. Applied Mechanics Reviews, 2004, 57(3):B15. [49] SETHIAN J A. A fast marching level set method for monotonically advancing fronts[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(4):1591-1595. |