[1] DANIEL S, ALESSANDRO G, OLGA K, et al. Distributed earth satellite systems:What is needed to move forward[J]. Journal of Aerospace Information Systems, 2017, 14(8):412-438. [2] TOSHIAKI I, TOMONARI S, MICHITO I, et al. Remote synchronization experiments for quasi-zenith satellite system using multiple navigation signals as feedback control[J]. International Journal of Navigation and Observation 2011,doi:10.1155/2001/849814. [3] FABRIZIO T, ANDREW D, TOSHIAKI I, et al. Proposal for a novel remote synchronization system for the on-board crystal oscillator of the quasi-zenith satellite system[J]. Journal of the Institute of Navigation, 2006, 53(4):219-229. [4] TOSHIAKI I, MICHITO I, TOMONARI S, et al. Simulation and ground experiments of remote synchronization system for onboard crystal oscillator of quasi-zenith satellite[J]. Journal of the Institute of Navigation, 2006, 53(4):231-235. [5] KISHIMOTO M, HASE H, MATSUMOTO A, et al. QZSS system design and its performance[C]//Proceedings of the Institute of Navigation National Technical Meeting. San Diego:ION, 2007:405-410. [6] GIUNTA D, BUSCA G, DELLA T A, et al. Recent developments in time & frequency dissemination systems[C]//Proceedings of the 18th European Frequency and Time Forum, 2004:530-536. [7] GLENNON E P, GAUTHIER J P, CHOUDHURY M, et al. Synchronization and syntonization of formation flying cubesats using the namuru V3.2 spaceborne GPS receiver[C]//Proceedings of the ION 2013 Pacific PNT Meeting. San Diego:ION, 2013:23-25. [8] 钟兴旺, 陈豪. 卫星运动对星间双向法时间同步的影响分析与校正[J].中国空间科学技术, 2007, 27(6):54-58. ZHONG X W, CHEN H. Analysis and correction techniques of movement influence on inter-satellite two way time transfer[J]. Chinese Space Science and Technology, 2007, 27(6):54-58(in Chinese). [9] ZHOU S S, HU X G, LIU L. Applications of two-way satellite time and frequency transfer in the BeiDou navigation satellite system[J]. Science China, 2016, 59(10):109511. [10] HUANG Y J, TSAO H W. Multiple access interference suppression for TWSTFT applications[J]. IEEE Transaction on Instrumentation and Measurement, 2017, 66(6):1337-1342. [11] FUJIEDA M, PIESTER D, GOTOH T, et al. Carrier-phase two-way satellite frequency transfer over a very long baseline[J]. Metrologia, 2014, 51(3):253-262. [12] HARRIS J, WU S, BERTIGER W. GPS time interval and state measurement for PARCS[C]//Proceedings of the IEEE International Frequency Control Symposium. Piscataway, NJ:IEEE Press, 2003:185-190. [13] ZHOU W, MIAO M, ZHOU H, et al. A novel phase processing approach based on new concept and method[C]//Proceedings of the 22nd European Frequency and Time Forum, 2009:492-495. [14] BERTIGER W, DUNN C, HARRIS I. Relative time and frequency alignment between two low earth orbiters:GRACE[C]//Proceedings of the 17th European Frequency and Time Forum, 2003:273-279. [15] KIM J. Simulation study of a low-low satellite-to-satellite tracking mission[D]. Austin:The University of Texas at Austin, 2000. [16] KIM J. Flight performance analysis of a high accuracy inter-satellite ranging instrument[C]//Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, Reston, VA:AIAA, 2007. [17] 佘世刚, 王锴, 周毅, 等. 高精度星间微波测距技术[J]. 宇航学报, 2006, 27(3):85-89. SHE S G, WANG K, ZHOU Y, et al. The technology of high accuracy inter-satellite microwave ranging[J]. Journal of Astronautics, 2006, 27(3):85-89(in Chinese). [18] TAMARA B, JAKOB F, UNG D K. Characteristics and accuracies of the GRACE inter-satellite pointing[J]. Advances in Space Research, 2012, 50(1):123-125. [19] 黄波, 胡修林. 北斗2导航卫星星间测距与时间同步技术[J]. 宇航学报, 2011, 32(6):1271-1275. HUANG B, HU X L. Inter-satellite ranging and time synchronization technique for BD2[J]. Journal of Astronautics, 2011,32(6):1271-1275(in Chinese). [20] GRIGGS E R, KURSINSKI E R, AKOS D M. Characterization of short-term GNSS satellite clock stability[C]//Proceedings of the 46th Annual Precise Time and Time Interval Systems and Applications Meeting, 2014:170-175. [21] 胡志刚. 北斗卫星导航系统性能评估理论与试验验证[D]. 武汉:武汉大学, 2013. HU Z G. BeiDou navigation satellite system performance assessment theory and experimental verification[D]. Wuhan:Wuhan University, 2013. [22] 郭海荣. 导航卫星原子钟时频特性分析理论与方法研究[D]. 郑州:解放军信息工程大学, 2006. GUO H R. Study on the analysis theories and algorithms of the time and frequency characterization for atomic clocks of navigation satellites[D]. Zhengzhou:Information Engineering University, 2006. [23] 伍晓芳, 刘刚, 高峻雄, 等. 新型VCOCXO控温原理及实现方法研究[J]. 华中科技大学学报(自然科学版), 2004, 32(2):46-48. WU X F, LIU G, GAO J X, et al. The theory of temperature control for a new VCOCXO and its realization[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2004, 32(2):46-48(in Chinese). [24] 苗苗, 周渭, 李智奇, 等. 用于时间同步的高精度短时间间隔测量方法[J]. 北京邮电大学学报, 2012, 35(4):77-80. MIAO M, ZHOU W, LI Z Q, et al. Application research of high-precision time interval measurement on time synchronization[J]. Journal of Beijing University of Posts and Telecommunications, 2012, 35(4):77-80(in Chinese). [25] ALLAN D W, BARNES J A. In a modified "Allan Variance" with increased oscillator characterization ability[C]//Proceedings of The 35th Frequency Control Symposium, 1981:470-475. [26] 涂佳, 谷德峰, 吴翊, 等. 基于星载双频GPS的长基线卫星编队高精度快速星间相对定位[J]. 系统工程与电子技术, 2011, 33(8):1850-1855. TU J, GU D F, WU Y, et al. Precise and rapid inter-satellite relative positioning for long baseline satellite formation using onboard dual-frequency GPS[J]. Systems Engineering and Electronics, 2011, 33(8):1850-1855(in Chinese). [27] 吴佳鹏, 王盾, 李继猛, 等. 一种时间同步设备时延高精度校准系统及其方法:中国. ZL201418007734.3[P]. 2017-06-16 WU J P, WANG D, LI J M, et al. High precision delay calibration system and method for time synchronization equipment:China. ZL201418007734.3[P]. 2017-06-16(in Chinese). |