[1] SENGUPTA T K, GANERWAL G, DIPANKAR A. High accuracy compact schemes and Gibbs' phenomenon[J]. Journal of Scientific Computing, 2004, 21(3):253-268. [2] HARTEN A. High resolution schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 1983, 49(3):357-393. [3] COCKBURN B, SHU C W. The Runge-Kutta discontinuous Galerkin method for conservation laws V[J]. Journal of Computational Physics, 1998, 141(2):199-224. [4] HUYNH H T. A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods[C]//18th AIAA Computational Fluid Dynamics Conference. Reston:AIAA, 2007. [5] HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes, III[J]. Journal of Computational Physics, 1987, 71(2):231-303. [6] SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J]. Journal of Computational Physics, 1988, 77(2):439-471. [7] LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1):200-212. [8] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1):202-228. [9] 李康, 刘娜, 何志伟, 等. 一种基于双界面函数的界面捕捉方法[J]. 力学学报, 2017, 49(6):1290-1300. LI K, LIU N, HE Z W, et al. A new interface capturing method based on double interface functions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6):1290-1300(in Chinese). [10] 李超群, 李易, 张晨曦, 等. 沿流向微结构沟槽流场直接数值模拟[J]. 航空学报, 2020, 41(11):123628. LI C Q, LI Y, ZHANG C X, et al. Direct numerical simulation of flow field over streamwise micro riblets[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11):123628(in Chinese). [11] LI H B, JIANLING L, CHA X, et al. Investigation of hot jet on active control of oblique detonation waves[J]. Chinese Journal of Aeronautics, 2020, 33(3):861-869. [12] 刘君, 韩芳, 魏雁昕. 应用维数分裂方法推广MUSCL和WENO格式的若干问题[J]. 航空学报, 2022, 43(3):125009. LIU J, HAN F, WEI Y X. MUSCL and WENO schemes problems generated by dimension splitting approach[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3):125009(in Chinese). [13] 杨理, 岳连捷, 张新宇. 斜爆轰波的波角和法向速度-曲率关系初探[J]. 航空学报, 2020, 41(11):123701. YANG L, YUE L J, ZHANG X Y. Preliminary study on wave angle and normal velocity-curvature relation of oblique detonation wave[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11):123701(in Chinese). [14] 杜钰锋, 林俊, 王勋年, 等. 亚声速风洞可压缩流体扰动模态分析[J]. 航空学报, 2021, 42(6):124424. DU Y F, LIN J, WANG X N, et al. Analysis of modes of disturbances in compressible fluid in subsonic wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6):124424(in Chinese). [15] HENRICK A K, ASLAM T D, POWERS J M. Mapped weighted essentially non-oscillatory schemes:Achieving optimal order near critical points[J]. Journal of Computational Physics, 2005, 207(2):542-567. [16] BORGES R, CARMONA M, COSTA B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2008, 227(6):3191-3211. [17] CASTRO M, COSTA B, DON W S. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 2011, 230(5):1766-1792. [18] YAN Z G, LIU H Y, MAO M L, et al. New nonlinear weights for improving accuracy and resolution of weighted compact nonlinear scheme[J]. Computers & Fluids, 2016, 127:226-240. [19] BHISE A A, RAJU G N, RATHAN S, et al. An efficient hybrid WENO scheme with a problem independent discontinuity locator[J]. International Journal for Numerical Methods in Fluids, 2019, 91(1):1-28. [20] ZHANG S H, ZHU J, SHU C W. A brief review on the convergence to steady state solutions of Euler equations with high-order WENO schemes[J]. Advances in Aerodynamics, 2019(1):307-331. [21] WU X S, ZHAO Y X. A high-resolution hybrid scheme for hyperbolic conservation laws[J]. International Journal for Numerical Methods in Fluids, 2015, 78(3):162-187. [22] FAN P. High order weighted essentially nonoscillatory WENO-η schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 2014, 269:355-385. [23] KIM C H, HA Y, YOON J. Modified non-linear weights for fifth-order weighted essentially non-oscillatory schemes[J]. Journal of Scientific Computing, 2016, 67(1):299-323. [24] FENG H, HUANG C, WANG R. An improved mapped weighted essentially non-oscillatory scheme[J]. Applied Mathematics and Computation, 2014, 232:453-468. [25] FENG H, HU F X, WANG R. A new mapped weighted essentially non-oscillatory scheme[J]. Journal of Scientific Computing, 2012, 51(2):449-473. [26] LI Q, LIU P X, ZHANG H X. Piecewise polynomial mapping method and corresponding WENO scheme with improved resolution[J]. Communications in Computational Physics, 2015, 18(5):1417-1444. [27] 刘朋欣, 李沁, 张涵信. 基于映射函数的中心型三阶格式[J]. 空气动力学学报, 2017, 35(1):71-77. LIU P X, LI Q, ZHANG H X. A kind of third order central scheme based on mapping functions[J]. Acta Aerodynamica Sinica, 2017, 35(1):71-77(in Chinese). [28] WANG R, FENG H, HUANG C. A new mapped weighted essentially non-oscillatory method using rational mapping function[J]. Journal of Scientific Computing, 2016, 67(2):540-580. [29] VEVEK U S, ZANG B, NEW T H. Adaptive mapping for high order WENO methods[J]. Journal of Computational Physics, 2019, 381:162-188. [30] 张德良. 计算流体力学教程[M]. 北京:高等教育出版社, 2010:163-168. ZHANG D L. A course in computational fluid dynamics[M]. Beijing:Higher Education Press, 2010:163-168. (in Chinese). [31] SHU C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws:NASA C-R-97-206253[J]. Washington, D.C.:NASA,1998. [32] PIROZZOLI S. On the spectral properties of shock-capturing schemes[J]. Journal of Computational Physics, 2006, 219(2):489-497. [33] 涂国华, 邓小刚, 毛枚良. 5阶非线性WCNS和WENO差分格式频谱特性比较[J]. 空气动力学学报, 2012, 30(6):709-712. TU G H, DENG X G, MAO M L. Spectral property comparison of fifth-order nonlinear WCNS and WENO difference schemes[J]. Acta Aerodynamica Sinica, 2012, 30(6):709-712(in Chinese). [34] 骆信, 吴颂平. 改进的五阶WENO-Z+格式[J]. 力学学报, 2019, 51(6):1927-1939. LUO X, WU S P. An improved fifth-order WENO-Z+ scheme[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6):1927-1939(in Chinese). [35] SOD G A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J]. Journal of Computational Physics, 1978, 27(1):1-31. [36] LAX P D. Weak solutions of nonlinear hyperbolic equations and their numerical computation[J]. Communications on Pure and Applied Mathematics, 1954, 7(1):159-193. [37] SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J]. Journal of Computational Physics, 1988, 77(2):439-471. [38] YEE H C, WARMING R F, HARTEN A. Implicit total variation diminishing (TVD) schemes for steady-state calculations[J]. Journal of Computational Physics, 1985, 57(3):327-360. [39] LAX P D, LIU X D. Solution of two-dimensional Riemann problems of gas dynamics by positive schemes[J]. SIAM Journal on Scientific Computing, 1998, 19(2):319-340. [40] SHI J, ZHANG Y T, SHU C W. Resolution of high order WENO schemes for complicated flow structures[J]. Journal of Computational Physics, 2003, 186(2):690-696. [41] WOODWARD P, COLELLA P. The numerical simulation of two-dimensional fluid flow with strong shocks[J]. Journal of Computational Physics, 1984, 54(1):115-173. |