[1] 田威, 廖文和. 工业机器人精度补偿技术及应用[M]. 北京:科学出版社, 2019:2-4. TIAN W, LIAO W H. Accuracy compensation technology and application of industrial robot[M]. Beijing:China Science Publishing & Media Ltd., 2019:2-4(in Chinese). [2] 黄志刚, 柯映林. 飞机整体框类结构件铣削加工的模拟研究[J]. 中国机械工程, 2004, 15(11):991-995. HUANG Z G, KE Y L. Study on key technologies of milling process simulation for aerospace monolithic components[J].China Mechanical Engineering, 2004, 15(11):991-995(in Chinese). [3] 布音. 工业机器人精密制孔系统刚度特性研究[D]. 南京:南京航空航天大学, 2017:1-5. BU Y. Analysis of stiffness properities for robotic precise drilling system[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017:1-5(in Chinese). [4] DEVLIEG R. High-accuracy robotic drilling/milling of 737 inboard flaps[J]. SAE International Journal of Aerospace, 2011, 4(2):1373-1379. [5] 丰飞, 杨海涛, 唐丽娜, 等. 大构件重载高精加工机器人本体研制与性能提升关键技术[J]. 中国机械工程, 2021, 32(19):2269-2287. FENG F, YANG H T, TANG L N, et al. Key technologies of development and performance improvement of the heavy-duty and high precision machining robot[J]. China Mechanical Engineering, 2021, 32(19):2269-2287(in Chinese). [6] YAMANE Y,YIN R S, MIYAKE M, et al. Measuring and cutting a propeller for a ship by an articulated robot[J]. Journal of the Japan Society for Precision Engineering, 1991, 57(8):1387-1392. [7] MENG F, ZHANG H O, WANG G L. Application of industrial robot in rapid prototype manufacturing technology[C]//2010 the 2nd International Conference on Industrial Mechatronics and Automation. Piscataway, NJ:IEEE Press, 2010:218-220. [8] JOHN P, CHRISTOS D, PANAGIOTIS S,et al. Machining with robots:A critical review[C]//7th International Conference on Digital Enterprise Technology. Athens:Laboratory for Manufacturing Systems and Automation, 2011:1-9. [9] CHEN Y H, DONG F H. Robot machining:recent development and future research issues[J]. The International Journal of Advanced Manufacturing Technology, 2013, 66(9-12):1489-1497. [10] ABELE E, WEIGOLD M, ROTHENBVCHER S. Modeling and identification of an industrial robot for machining applications[J]. CIRP Annals, 2007, 56(1):387-390. [11] ABELE E, ROTHENBVCHER S, WEIGOLD M. Cartesian compliance model for industrial robots using virtual joints[J]. Production Engineering, 2008, 2(3):339-343. [12] ABELE E, BAUER J, ROTHENBVCHER S, et al. Prediction of thetool displacement by coupled models of the compliant industrial robot and the milling process[C]//International Conference on Process Machine Interactions, 2008:223-230. [13] ABELE E, BAUER J, PISCHAN M, et al. Prediction of the tool displacement for robot milling applications using coupled models of an industrial robot and removal simulation[C]//Proceedings of the CIRP 2nd International Conference Process Machine Interactions, 2010:10. [14] ABELE E, BAUER J, HEMKER T, et al. Comparison and validation of implementations of a flexible joint multibody dynamics system model for an industrial robot[J]. CIRP Journal of Manufacturing Science and Technology, 2011, 4(1):38-43. [15] WANG J J, ZHANG H, FUHLBRIGGE T. Improving machining accuracy with robot deformation compensation[C]//2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2009:3826-3831. [16] PAN Z X, ZHANG H. Improving robotic machining accuracy by real-time compensation[C]//2009 ICCAS-SICE. Piscataway, NJ:IEEE Press, 2009:4289-4294. [17] LEHMANN C, OLOFSSON B, NILSSON K, et al. Robot joint modeling and parameter identification using the clamping method[J]. IFAC Proceedings Volumes, 2013, 46(9):813-818. [18] LEHMANN C, HALBAUER M, EUHUS D, et al. Milling with industrial robots:Strategies to reduce and compensate process force induced accuracy influences[C]//Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies & Factory Automation (ETFA 2012). Piscataway, NJ:IEEE Press, 2012:1-4. [19] 焦嘉琛. 工业机器人作业系统刚度强化机制与轨迹补偿方法研究[D]. 南京:南京航空航天大学, 2020:100-101. JIAO J C. Research on the stiffness strengthening mechanism and trajectory compensation method of industrial robot operating system[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2020:100-101(in Chinese). [20] GONUL B, SAPMAZ O F, TUNC L T. Improved stable conditions in robotic milling by kinematic redundancy[J]. Procedia CIRP, 2019, 82:485-490. [21] SCHNEIDER U, MOMENI-K M, ANSALONI M, et al. Stiffness modeling of industrial robots for deformation compensation in machining[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2014:4464-4469. [22] NAM H H, KOUROUSSIS G, VERLINDEN O, et al. Modal updating of a 6-axis robot for milling application[C]//Proceedings of the 25th International Congress on Sound and Vibration, 2018:1-8. [23] SCHNEIDER U, DRUST M, POSADA D, et al.Position control of an industrial robot using an optical measurement system for machining purposes[C]//Proceedings of the 11th International Conference on Manufacturing Research (ICMR2013), 2013. [24] SCHNEIDER U, DRUST M, ANSALONI M, et al. Improving robotic machining accuracy through experimental error investigation and modular compensation[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(1-4):3-15. [25] MOELLER C, SCHMIDT H C, KOCH P, et al. Realtime pose control of an industrial robotic system for machining of large scale components in aerospace industry using laser tracker system[J]. SAE International Journal of Aerospace, 2017, 10(2):100-108. [26] OLOFSSON B, SÖRNMO O, SCHNEIDER U, et al. Modeling and control of a piezo-actuated high-dynamic compensation mechanism for industrial robots[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2011:4704-4709. [27] SCHNEIDER U, DRUST M, PUZIK A, et al. Compensation of errors in robot machining with a parallel 3D-piezo compensation mechanism[J]. Procedia CIRP, 2013, 7:305-310. [28] ABELE E, SCHVTZER K, BAUER J, et al. Tool path adaption based on optical measurement data for milling with industrial robots[J]. Production Engineering, 2012, 6(4-5):459-465. [29] ZENG Y F, TIAN W, LI D W, et al. An error-similarity-based robot positional accuracy improvement method for a robotic drilling and riveting system[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(9-12):2745-2755. [30] 曾远帆. 基于空间相似性的工业机器人定位精度补偿技术研究[D]. 南京:南京航空航天大学, 2017. ZENG Y F. Positional error compensation technology for industrial robot based on spatial similarity[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017(in Chinese). [31] 何晓煦, 田威, 曾远帆, 等. 面向飞机装配的机器人定位误差和残差补偿[J]. 航空学报, 2017, 38(4):420538. HE XX, TIAN W, ZENG Y F, et al. Robot positioning error and residual error compensation for aircraft assembly[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):420538(in Chinese). [32] TIAN W, MEI D Q, LI P C, et al. Determination of optimal samples for robot calibration based on error similarity[J]. Chinese Journal of Aeronautics, 2015, 28(3):946-953. [33] LI B, TIAN W, ZHANG C F, et al. Positioning error compensation of an industrial robot using neural networks and experimental study[J]. Chinese Journal of Aeronautics, 2022, 35(2):346-360. [34] ZENG Y F, TIAN W, LIAO W H. Positional error similarity analysis for error compensation of industrial robots[J]. Robotics and Computer-Integrated Manufacturing, 2016, 42:113-120. [35] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 12642-2013中华人民共和国推荐性国家标准:工业机器人性能规范及其试验方法[S]. 北京:中国标准出版社, 2014. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China.GB/T 12642-2013 National standard (recommended) of the People's Republic of China:Industrial robots-Performance criteria and related test methods[S]. Beijing:Standards Press of China, 2014(in Chinese). [36] ROTH Z, MOORING B, RAVANI B. An overview of robot calibration[J]. IEEE Journal on Robotics and Automation, 1987, 3(5):377-385. [37] WHITNEY D E, LOZINSKI C A, ROURKE J M. Industrial robot forward calibration method and results[J]. Journal of Dynamic Systems, Measurement, and Control, 1986, 108(1):1-8. |