[1] BLEVINS R D, SAUNDERS H. Flow-induced vibration[M]. New York:Van Nostrand Reinhold Co., 1990:1-3. [2] WILLIAMSON C H K, GOVARDHAN R. Vortex-induced vibrations[J]. Annual Review of Fluid Mechanics, 2004, 36:413-455. [3] WILLIAMSON C H K, GOVARDHAN R. A brief review of recent results in vortex-induced vibrations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6):713-735. [4] 贾志刚, 吕志咏, 邓小刚. 均匀来流中旋转振荡圆柱绕流的数值研究[J]. 航空学报, 1999, 20(5):389-392. JIA Z G, LV Z Y, DENG X G. Numerical study of flowfield past a rotating oscillation circular cylinder in uniform flow[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(5):389-392(in Chinese). [5] 唐虎, 常士楠, 成竹, 等. 亚临界圆柱绕流的DES方法比较[J]. 航空学报, 2017, 38(3):87-97. TANG H, CHANG S N, CHENG Z, et al. Comparison of detached eddy simulation schemes on a subcritical flow around circular cylinder[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):87-97(in Chinese). [6] FENG C C. The measurement of vortex induced effects in flow past stationary and oscillating circular and D-section cylinders[D]. Vancouver:University of British Columbia, 1968:30-45. [7] KHALAK A, WILLIAMSON C H K. Dynamics of a hydroelastic cylinder with very low mass and damping[J]. Journal of Fluids and Structures, 1996, 10(5):455-472. [8] KHALAK A, WILLIAMSON C H K. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping[J]. Journal of Fluids and Structures, 1999, 13(7-8):813-851. [9] MITTAL S, KUMAR V. Finite element study of vortex-induced cross-flow and in-line oscillations of a circular cylinder at low Reynolds numbers[J]. International Journal for Numerical Methods in Fluids, 1999, 31(7):1087-1120. [10] JEON D, GHARIB M. On circular cylinders undergoing two-degree-of-freedom forced motions[J]. Journal of Fluids and Structures, 2001, 15(3-4):533-541. [11] JAUVTIS N, WILLIAMSON C H K. The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[J]. Journal of Fluid Mechanics, 2004, 509:23-62. [12] PRASANTH T K, BEHARA S, SINGH S P, et al. Effect of blockage on vortex-induced vibrations at low Reynolds numbers[J]. Journal of Fluids and Structures, 2006, 22(6-7):865-876. [13] YAO W, JAIMAN R K. Model reduction and mechanism for the vortex-induced vibrations of bluff bodies[J]. Journal of Fluid Mechanics, 2017, 827:357-393. [14] YAO W, JAIMAN R K. Feedback control of unstable flow and vortex-induced vibration using the eigensystem realization algorithm[J]. Journal of Fluid Mechanics, 2017, 827:394-414. [15] GOTTLIEB D, ORSZAG S A. Numerical analysis of spectral methods:Theory and applications[C]//CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industry and Applied Mathematics. Philadelphia, PA:SIAM, 1977:969-970. [16] WANG J P. Key to problems in spectral methods[M]//HAFEZ M, OSHIMA K. Computational fluid dynamics review. Singapore:World Scientific, 1998:369-378. [17] 王健平. 谱方法的基本问题与有限谱法[J]. 空气动力学学报, 2001, 19(2):161-171. WANG J P. Fundamental problems in spectral methods and finite spectral method[J]. Acta Aerodynamica Sinica, 2001, 19(2):161-171(in Chinese). [18] KOPRIVA D A. A staggered-grid multidomain spectral method for the compressible Navier-Stokes equations[J]. Journal of Computational Physics, 1998, 143(1):125-158. [19] LIU Y, VINOKUR M, WANG Z J. Spectral difference method for unstructured grids I:Basic formulation[J]. Journal of Computational Physics, 2006, 216(2):780-801. [20] WANG Z J, LIU Y, MAY G, et al. Spectral difference method for unstructured grids Ⅱ:Extension to the Euler equations[J]. Journal of Scientific Computing, 2007, 32:45-71. [21] LIANG C, JAMESON A, WANG Z J. Spectral difference method for compressible flow on unstructured grids with mixed elements[J]. Journal of Computational Physics, 2009, 228(8):2847-2858. [22] JAMESON A. A proof of the stability of the spectral difference method for all orders of accuracy[J]. Journal of Scientific Computing, 2010, 45:348-358. [23] MAY G, SCHÖBERL J. Analysis of a spectral difference scheme with flux interpolation on Raviart-Thomas elements:AICES-2010/04-8[R]. Aachen, NRW:RWTH Aachen University, 2010. [24] BALAN A, MAY G, SCHÖBERL J. A stable high-order spectral difference method for hyperbolic conservation laws on triangular elements[J]. Journal of Computational Physics, 2012, 231(5):2359-2375. [25] ZHANG B, LIANG C. A simple, efficient, and high-order accurate curved sliding-mesh interface approach to spectral difference method on coupled rotating and stationary domains[J]. Journal of Computational Physics, 2015, 295:147-160. [26] ZHANG B, LIANG C, YANG J, et al. A 2D parallel high-order sliding and deforming spectral difference method[J]. Computers & Fluids, 2016, 139:184-196. [27] LI M, QIU Z, LIANG C, et al. A new high-order spectral difference method for simulating compressible flows on unstructured grids with mixed elements:AIAA-2017-0520[R]. Reston, VA:AIAA, 2017. [28] RUSANOV V V. Calculation of interaction of non-steady shock waves with obstacles[J]. Journal of Computational Math Physics USSR, 1961, 1:261-279. [29] PERSSON P O, BONET J, PERAIRE J. Discontinuous Galerkin solution of the Navier-Stokes equations on deformable domains[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198:1585-1595. [30] THOMAS P D, LOMBARD C K. Geometric conservation law and its application to flow computations on moving grids[J]. AIAA Journal, 1979, 17(10):1030-1037. [31] KOPRIVA D A. Metric identities and the discontinuous spectral element method on curvilinear meshes[J]. Journal of Scientific Computing, 2006, 26(3):301-327. [32] 刘君, 白晓征, 张涵信, 等. 关于变形网格"几何守恒律"概念的讨论[J]. 航空计算技术, 2009, 39(4):1-5. LIU J, BAI X Z, ZHANG H X, et al. Discussion about GCL for deforming grids[J]. Aeronautical Computing Technique, 2009, 39(4):1-5(in Chinese). [33] MINOLI C A, KOPRIVA D A. Discontinuous Galerkin spectral element approximations on moving meshes[J]. Journal of Computational Physics, 2011, 230(5):1876-1902. [34] MA R, CHANG X, ZHANG L, et al. On the geometric conservation law for unsteady flow simulations on moving mesh[J]. Procedia Engineering, 2015, 126:639-644. [35] XU D, DENG X, CHEN Y, et al. On the freestream preservation of finite volume method in curvilinear coordinates[J]. Computers & Fluids, 2016, 129:20-32. [36] KARYPIS G, KUMAR V. A Fast and high quality multilevel scheme for partitioning irregular graphs[J]. SIAM Journal on Scientific Computing, 1999, 20:359-392. [37] MAVRIPLIS C A. Nonconforming discretizations and a posteriori error estinates for adaptive spectral element techniques[D]. Boston, MA:Massachusetts Institute of Technology, 1989:92-111. [38] RUUTH S. Global optimization of explicit strong-stability-preserving Runge-Kutta methods[J]. Mathematics of Computation, 2006, 75(253):183-207. [39] ERLEBACHER G, HUSSAINI M Y, SHU C W. Interaction of a shock with a longitudinal vortex[J]. Journal of Fluid Mechanics, 1997, 337:129-153. |