[1] 中国航空工业空气动力研究院. 航空气动力技术[M]. 北京: 航空工业出版社, 2013: 188-196. Aerodynamic Research Institute of Aviation Industry of China. Aerodynamic technology[M]. Beijing: Aviation Industry Press, 2013: 188-196 (in Chinese).
[2] HUANG Y, POOL D M, STROOSMA O, et al. A review of control schemes for hydraulic stewart platform flight simulator motion systems: AIAA-2016-1436[R].Reston, VA: AIAA, 2016.
[3] 郁文山, 饶正周, 杜宁, 等. 2.4m风洞双自由度模型支撑机构电液伺服系统研制[J]. 液压与气动, 2012, 33(12): 50-52. YU W S, RAO Z Z, DU N, et al. Development of electro-hydraulic servo system for wind tunnel 2DOF model support mechanism[J]. Hydraulic and Pneumatic, 2012,33(12): 50-52 (in Chinese).
[4] 郭敬, 赵克定, 郭治富. 液压仿真转台的PFC-PID串级控制[J]. 航空学报, 2008, 29(5): 1395-1399. GUO J, ZHAO K D, GUO Z F. PFC-PID cascade control of hydraulic simulation turntable[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(5): 1395-1399 (in Chinese).
[5] KARAM M, ELBAYOMY, JIAO Z X, et al. PID controller optimization by GA and its performances on the electro-hydraulic servo control system[J]. Chinese Journal of Aeronautics, 2008, 21(4): 378-384.
[6] BONCHIS A, CORKE P I, RYE D C. Variable structure methods in hydraulic servo systems control[J]. Automatica, 2001, 37(4): 589-595.
[7] 周开, 李维嘉. 高速大惯性液压伺服系统高精度控制研究[J]. 计算机仿真, 2015, 32(12): 187-191. ZHOU K, LI W J. Research on high precision control of high speed large inertial hydraulic servo system[J]. Computer Simulation, 2015, 32(12): 187-191 (in Chinese).
[8] 姚建勇, 焦宗夏, 黄澄. 基于动态逆模型的电液位置伺服系统复合控制[J]. 机械工程学报, 2011, 47(10): 145-150. YAO J Y, JIAO Z X, HUANG C. Compound control of electro-hydraulic position servo system based on dynamic inverse model[J]. Journal of Mechanical Engineering, 2011, 47(10): 145-150 (in Chinese).
[9] 郝小星, 王旭平. 基于滑模自适应控制的电液位置伺服系统低速性能改善[J]. 液压与气动, 2015(1): 39-43. HAO X X, WANG X P. Improvement of low speed performance of electro-hydraulic position servo system based on sliding mode adaptive control[J]. Hydraulic and Pneumatic, 2015(1): 39-43 (in Chinese).
[10] 李建雄, 方一鸣, 石胜利. 具有输入饱和的轧机液压伺服系统鲁棒动态输出反馈控制[J]. 控制与决策, 2013, 28(2): 211-216. LI J X, FANG Y M, SHI S L. Rubust dynamic output feedback control of rolling mill hydraulic servo system with input saturation[J]. Control and Decision, 2013, 28(2): 211-216 (in Chinese).
[11] 方一鸣, 李叶红, 石胜利, 等. 液压伺服位置系统的神经网络backstepping控制[J]. 电机与控制学报, 2014, 18(6): 108-114. FANG Y M, LI Y H, SHI S L, et al. Neural network backstepping control of hydraulic servo position system[J]. Electric Machines and Control, 2014, 18(6): 108-114 (in Chinese).
[12] ZHAO J, WANG J, WANG S. Fractional order control to the electro-hydraulic system in insulator fatigue test device[J]. Mechatronics, 2013, 23(7): 828-839.
[13] WANG C, JIAO Z, WU S, et al. Nonlinear adaptive torque control of electro-hydraulic load system with external active motion disturbance[J]. Mechatronics, 2014, 24(1): 32-40.
[14] 段锁林, 郑剑锋, 王雪. 线性不确定性电液位置伺服系统的前馈补偿滑模鲁棒跟踪控制研究[J]. 液压与气动, 2015(11): 63-68. DUAN S L, ZHENG J F, WANG X. Research on sliding mode robust tracking control based on feedforward compensation for electro-hydraulic position servo system with linear uncertainty[J]. Hydraulic and Pneumatic, 2015(11): 63-68 (in Chinese).
[15] MANDAL P, SARKAR B K, SAHA R, et al. Real-time fuzzy-feedforward controller design by bacterial foraging optimization for an electrohydraulic system[J]. Engineering Applications of Artificial Intelligence, 2015, 45(C): 168-179.
[16] KARA-MOHAMED M, HEATH W P, LANZON A. Enhanced tracking for nanopositioning systems using feedforward/feedback multivariable control design[J]. IEEE Transactions on Control Systems Technology, 2015, 23(3): 1003-1013.
[17] ZHAO J, SHEN G, ZHU W, et al. Robust force control with a feed-forward inverse model controller for electro-hydraulic control loading systems of flight simulators[J]. Mechatronics, 2016, 38: 42-53.
[18] 李军伟, 赵克定, 吴盛林. 一种基于模糊补偿的自适应控制在液压转台中的应用[J]. 航空学报, 2003, 24(1): 72-74. LI J W, ZHAO K D, WU S L. Application of adaptive control based on fuzzy compensation in hydraulic turntable[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(1): 72-74 (in Chinese).
[19] 马俊功, 王世富, 王占林. 电液伺服速度系统的模糊增益调度控制[J]. 北京航空航天大学学报, 2007, 33(3): 294-297. MA J G, WANG S F, WANG Z L. Fuzzy gain scheduling control of electro-hydraulic servo speed system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(3): 294-297 (in Chinese).
[20] 张博, 范国勇, 张保平. 基于MATLAB的电液伺服系统模糊PID控制研究[J]. 机械工程与自动化, 2016, 2(1): 169-170. ZHANG B, FAN G Y, ZHANG B P. Research on fuzzy PID control of electro-hydraulic servo system based on MATLAB[J]. Mechanical Engineering & Automation, 2016, 2(1): 169-170 (in Chinese).
[21] 王洪斌, 刘少岗, 李瑶瑶. 基于自适应模糊聚类的T-S模糊辨识方法[J]. 模糊系统与数学, 2014, 28(5): 137-142. WANG H B, LIU S G, LI Y Y. T-S fuzzy identification method based on adaptive fuzzy clustering[J]. Fuzzy Systems and Mathematics, 2014, 28(5): 137-142 (in Chinese).
[22] 朱兴龙, 周骥平. 液压伺服关节自适应模糊神经网络控制补偿方法[J]. 控制理论与应用, 2005, 22(5): 694-698. ZHU X L, ZHOU J P. Hydraulic servo joint adaptive fuzzy neural network control compensation method[J]. Control Theory and Applications, 2005, 22(5): 694-698 (in Chinese).
[23] PRATUMSUWAN P, THONGCHAI S, TANSRIWO-NG S. A hybrid of fuzzy and proportional-integral-derivative controller for electro-hydraulic position servo system[J]. International Journal of Energy Research, 2010, 1(2): 62-67.
[24] SHAO J P, WANG Z W, LI J Y, et al. Rule self-tuning fuzzy-PID controller of electro-hydraulic position servo system[J]. Journal of Central South University, 2010, 41(3): 960-965. |