[1] BEN-HAIM Y, ELISHAKOFF I. Convex models of uncertainty in applied mechanics[M]. Amsterdam:Elsevier Science Publisher, 1990:48-52.
[2] ELISHAKOFF I, FERRACUTI B. Fuzzy sets based interpretation of the safety factor[J]. Fuzzy Sets and Systems, 2006, 157(18):2495-2512.
[3] DUBOIS D, PRADE H. Fuzzy sets and systems:Theory and applications[M]. New York:Academic Press, 1997:159-163.
[4] SONG S, LU Z Z. A generalized Borgonovo's importance measure for fuzzy input uncertainty[J]. Fuzzy Sets and Systems, 2012, 189(1):53-62.
[5] SONG S, LU Z Z. The uncertainty importance measures of the structural system in view of mixed uncertain variables[J]. Fuzzy Sets and Systems, 2014, 243:25-35.
[6] TANG Z, LU Z Z,PAN W, et al. An entropy based global sensitivity analysis for the structures with both fuzzy variables and random variables[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2013, 227(2):195-212.
[7] LI L, LU Z Z. Importance measure system of fuzzy and random input variables and its solution by point estimates[J]. Science China:Technology Science, 2011, 54(8):2167-2179.
[8] LI L, LU Z Z. Importance analysis on the failure probability of the fuzzy and random system and its state dependent parameter solution[J]. Fuzzy Sets and Systems, 2014, 250(2):69-89.
[9] CHENG L, LU Z Z. Global sensitivity analysis of fuzzy distribution parameter on failure probability and its single-loop estimation[J]. Journal of Applied Mathematics, 2014, 49:07-18.
[10] 陈超,吕震宙.模糊分布参数的全局灵敏度分析新方法[J]. 工程力学,2016, 3(2):25-33. CHEN C, LU Z Z. A new method for global sensitivity analysis of fuzzy distribution parameters[J]. Engineering Mechanics, 2016, 3(2):25-33(in Chinese).
[11] PEUQUET D. An algorithm for calculating minimum Euclidean distance between two geographic features[J]. Computers and Geosciences, 1992, 18(8):989-1001.
[12] CHAUDHURI B, ROSENFELD A. On a metric distance between fuzzy sets[J]. Pattern Recognition Letters, 1996, 17(17):1157-1160.
[13] BOXER L. On Hausdorff-like metrics for fuzzy sets[J]. Pattern Recognition Letters, 1997, 18(2):115-118.
[14] CHAUDHURI B, ROSENFELD A. A modified Hausdorff distance between fuzzy sets[J]. Information Sciences, 1999, 118(1-4):159-171.
[15] HELMUT A, LUDMILA S. Computing the Hausdorff distance between curved objects[J]. International Journal of Computational Geometry and Applications, 2008, 18(4):304-320.
[16] CARVALHO D, MARIE C, CHAVENT M, et al. Adaptive Hausdorff distances and dynamic clustering of symbolic interval data[J]. Pattern Recognition Letters, 2006, 27(3):167-179.
[17] CHEN X, DOIHARA T, NASU M. Spatial relations of distance between arbitrary objects in 2D/3D geographic spaces based on the Hausdorff metric[C]//LIESMARS'95, 1995.
[18] JULIER S. The scaled unscented transformation[C]//Proceedings of the American Control Conference. Piscataway(NJ):IEEE Press, 2002, 6:4555-4559.
[19] JULIER S, UHLMANN J. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3):401-422.
[20] JULIER S, UHLMANN J. Reduced sigma point filters for the propagation of means and covariance through nonlinear transformations[C]//Proceeding of the American Control Conference. Piscataway, NJ:IEEE Press, 2002,2:887-892. |