1 |
何友, 姚力波, 江政杰. 基于空间信息网络的海洋目标监视分析与展望[J]. 通信学报, 2019, 40(4): 1-9.
|
|
HE Y, YAO L B, JIANG Z J. Summary and future development of marine target surveillance based on spatial information network[J]. Journal on Communications, 2019, 40(4): 1-9 (in Chinese).
|
2 |
何友, 姚力波. 天基海洋目标信息感知与融合技术研究[J]. 武汉大学学报(信息科学版), 2017, 42(11): 1530-1536.
|
|
HE Y, YAO L B. Space-based Sea target information awareness and fusion[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1530-1536 (in Chinese).
|
3 |
何友, 熊伟, 刘俊, 等. 海上信息感知与融合研究进展及展望[J]. 火力与指挥控制, 2018, 43(6): 1-10.
|
|
HE Y, XIONG W, LIU J, et al. Review and prospect of research on maritime information perception and fusion[J]. Fire Control & Command Control, 2018, 43(6): 1-10 (in Chinese).
|
4 |
PAN X L, HE Y, WANG H P, et al. Mining regular behaviors based on multidimensional trajectories[J]. Expert Systems With Applications, 2016, 66: 106-113.
|
5 |
ANSARI M Y, MAINUDDIN, AHMAD A, et al. Spatiotemporal trajectory clustering: A clustering algorithm for spatiotemporal data[J]. Expert Systems With Applications, 2021, 178: 115048.
|
6 |
RONG H, TEIXEIRA A P, GUEDES SOARES C. Data mining approach to shipping route characterization and anomaly detection based on AIS data[J]. Ocean Engineering, 2020, 198: 106936.
|
7 |
潘奇明, 周文辉, 程咏梅. 运动目标轨迹分类与识别[J]. 火力与指挥控制, 2009, 34(11): 79-83.
|
|
PAN Q M, ZHOU W H, CHENG Y M. Trajectory classification and recognition of moving objects[J]. Fire Control & Command Control, 2009, 34(11): 79-83 (in Chinese).
|
8 |
魏龙翔, 何小海, 滕奇志, 等. 结合Hausdorff距离和最长公共子序列的轨迹分类[J]. 电子与信息学报, 2013, 35(4): 784-790.
|
|
WEI L X, HE X H, TENG Q Z, et al. Trajectory classification based on Hausdorff distance and longest common SubSequence[J]. Journal of Electronics & Information Technology, 2013, 35(4): 784-790 (in Chinese).
|
9 |
曲琳, 周凡, 陈耀武. 基于Hausdorff距离的视觉监控轨迹分类算法[J]. 吉林大学学报(工学版), 2009, 39(6): 1618-1624.
|
|
QU L, ZHOU F, CHEN Y W. Trajectory lcassification based on Hausdorff distance for visual surveillance system[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(6): 1618-1624 (in Chinese).
|
10 |
POKORNY F T, HAWASLY M, RAMAMOORTHY S. Topological trajectory classification with filtrations of simplicial complexes and persistent homology[J]. International Journal of Robotics Research, 2016, 35(1-3): 204-223.
|
11 |
BOLBOL A, CHENG T, TSAPAKIS I, et al. Inferring hybrid transportation modes from sparse GPS data using a moving window SVM classification[J]. Computers Environment and Urban Systems, 2012, 36(6):526-537.
|
12 |
赵竹珺, 吉根林. 时空轨迹分类研究进展[J]. 地球信息科学学报, 2017, 19(3): 289-297.
|
|
ZHAO Z J, JI G L. Research progress of spatial-temporal trajectory classification[J]. Journal of Geo-Information Science, 2017, 19(3): 289-297 (in Chinese).
|
13 |
潘新龙, 程学旗, 王海鹏, 等. 基于航迹数据挖掘的目标行为分析概述[J]. 指挥与控制学报, 2021, 7(4): 335-341.
|
|
PAN X L, CHENG X Q, WANG H P, et al. An overview of target behavior analysis based on trajectory data mining[J]. Journal of Command and Control, 2021, 7(4): 335-341 (in Chinese).
|
14 |
曹卫权, 李智翔, 魏强, 等. 基于区域分布概率密度估计的轨迹分类方法[J]. 计算机工程, 2018, 44(4): 262-267, 286.
|
|
CAO W Q, LI Z X, WEI Q, et al. Trajectory classification method based on probability density estimation of regional distribution[J]. Computer Engineering, 2018, 44(4): 262-267, 286 (in Chinese).
|
15 |
崔彤彤, 王桂玲, 高晶. 基于1DCNN-LSTM的船舶轨迹分类方法[J]. 计算机科学, 2020, 47(9): 175-184.
|
|
CUI T T, WANG G L, GAO J. Ship trajectory classification method based on 1DCNN-LSTM[J]. Computer Science, 2020, 47(9): 175-184 (in Chinese).
|
16 |
OWENS J, HUNTER A. Application of the self-organising map to trajectory classification[C]∥Proceedings Third IEEE International Workshop on Visual Surveillance. Piscataway: IEEE Press, 2002: 77-83.
|
17 |
BOLBOL A, CHENG T, TSAPAKIS I, et al. Inferring hybrid transportation modes from sparse GPS data using a moving window SVM classification[J]. Computers, Environment and Urban Systems, 2012, 36(6): 526-537.
|
18 |
SAINI R, KUMAR P, ROY P P, et al. Modeling local and global behavior for trajectory classification using graph based algorithm[J]. Pattern Recognition Letters, 2021, 150(C): 280-288.
|
19 |
PAN X L, WANG H P, HE Y, et al. Online classification of frequent behaviours based on multidimensional trajectories[J]. IET Radar, Sonar & Navigation, 2017, 11(7): 1147-1154.
|
20 |
VOVK V, GAMMERMAN A, SHAFER G. Algorithmic Learning in a Random World[M]. Cham: Springer International Publishing, 2022.
|
21 |
VOVK V. Universal well-calibrated algorithm for on-line classification[C]∥Learning Theory and Kernel Machines. Berlin: Springer, 2003: 358-372.
|
22 |
PAPADOPOULOS H. Inductive conformal prediction: Theory and application to neural networks[M]∥Tools in Artificial Intelligence. London: InTech, 2008 .
|
23 |
LAXHAMMAR R, FALKMAN G. Online learning and sequential anomaly detection in trajectories[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(6): 1158-1173.
|
24 |
PAN X L, WANG H P, CHENG X Q, et al. Online detection of anomaly behaviors based on multidimensional trajectories[J]. Information Fusion, 2020, 58: 40-51.
|
25 |
AGRAWAL R, IMIELIŃSKI T, SWAMI A. Mining association rules between sets of items in large databases[C]∥Proceedings of the 1993 ACM SIGMOD international conference on Management of data. New York: ACM, 1993: 207-216.
|
26 |
LI H H, LIU J X, YANG Z L, et al. Adaptively constrained dynamic time warping for time series classification and clustering[J]. Information Sciences, 2020, 534: 97-116.
|
27 |
GAMMERMAN A, VOVK V. Hedging predictions in machine learning[J]. The Computer Journal, 2007, 50(2): 151-163.
|
28 |
PICIARELLI C, MICHELONI C, FORESTI G L. Trajectory-based anomalous event detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(11): 1544-1554.
|
29 |
姜乔文, 刘瑜, 谭大宁, 等. 时空轨迹多维特征融合的行为规律挖掘算法[J]. 航空学报, 2023, 44(5): 326394.
|
|
JIANG Q W, LIU Y, TAN D N, et al. Regular behaviors mining algorithm based on spatiotemporal trajectory multidi-mensional features fusion[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(5): 32394 (in Chinese).
|