[1] LYNCH F T, KHODADOUST A. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Sciences, 2001, 37(8):669-767.
[2] GURBACKI H M, BRAGG M B. Unsteady flowfield about an iced airfoil:AIAA-2004-0562[R]. Reston:AIAA, 2004.
[3] ANSELL P J, BRAGG M B. Measurement of unsteady flow reattachment on an airfoil with a leading-edge horn-ice shape:AIAA-2012-2797[R]. Reston:AIAA, 2012.
[4] ANSELL P J, BRAGG M B. Characterization of ice-induced low-frequency flowfield oscillations and their effect on airfoil performance:AIAA-2013-2673[R]. Reston:AIAA, 2013.
[5] SPALART P R, JOU W H, STRELETS M, et al. Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach[M]. Advances in DNS/LES, Columbus:Greydon Press, 1997.
[6] THOMPSON D S, MOGILI P. Detached-eddy simulations of separated flow around wings with ice accretions:year one report:CR-2004-213379[R]. Washington, D.C.:NASA, 2004.
[7] MOGILI P, THOMPSON D S, CHOO Y, et al. RANS and DES computations for a wing with ice accretion:AIAA-2005-1372[R]. Reston:AIAA, 2005.
[8] LORENZO A, VALERO E, DE-PABLO V. DES/DDES post-stall study with iced airfoil:AIAA-2011-1103[R]. Reston:AIAA, 2011.
[9] TRAVIN A K, SHUR M L, SPALART P R, et al. Improvement of delayed detached-eddy simulation for LES with wall modeling[C]//European Conference on Computational Fluid Dynamics, 2006.
[10] SPALART P R, DECK S, SHUR M, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3):181-195.
[11] NIKITIN N V, NICOUD F, WASISTHO B, et al. An approach to wall modeling in large-eddy simulations[J]. Physic of Fluids, 2005, 12(7):1629-1632.
[12] XIAO Z X, LIU J, LUO K Y, et al. Numerical investigation of massively separated flows past rudimentary landing gear using advanced DES approaches[J]. AIAA Journal, 2013, 51(1):107-125.
[13] HUANG J B, XIAO Z X, LIU J, et al. Simulation of shock wave buffet and its suppression on an OAT15A supercritical airfoil by IDDES[J]. Science China Physics, Mechanics & Astronomy, 2012, 55(2):260-271.
[14] VAN LEER B. Towards the ultimate conservative difference scheme V:A second order sequel to Godunov's method[J]. Journal of Computational Physics, 1979, 32:101-136.
[15] MENTER F R. Two-equation eddy viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[16] HUNT J, WRAY A, MOIN P. Eddies, streams and convergence zones in turbulent flows[C]//Proceedings of the 1988 summer program. Stanford:Center for Turbulence Research, 1988.
[17] KHODADOUST A, DOMINIK C. Effect of in-flight ice accretion on the performance of a multi-element airfoil:TM-112174[R]. Washington, D.C.:NASA, 1995.
[18] DECK S. Zonal-Detached-Eddy simulation of the flow around a high-lift configuration[J]. AIAA Journal, 2005, 43(11):2372-2384.
[19] ZHONG B, SCHEURICH F, TITAREV V, et al. Turbulent flow simulations around a multi-element airfoil using URANS, DES and ILES approaches:AIAA-2009-3799[R]. Reston:AIAA, 2009.
[20] ARNOTT A D, SCHNEIDER G, NEITZKE K P, et al. Detailed characterization using PIV of the flow around an airfoil in high-lift configuration[M]//Particle Image Velocimetry:Recent Improvements. Berlin Heidelberg:Springer, 2004.
[21] MILLER D, SHIN J W, SHELDON D, et al. Further investigations of icing effects on an advanced high-lift multi-element airfoil:TM-106947[R]. Washington, D.C.:NASA, 1995.
[22] PENG S H, NEBENFUHR B, DAVIDSON LARS. Lessons learned from hybrid RANS-LES computations of a three-element airfoil flow:AIAA-2013-2741[R]. Reston:AIAA, 2013.
[23] SPALART P R. Young-person's guide to detached-eddy simulation grids:CR-2001-211032[R]. Washington, D.C.:NASA, 2001. |