收稿日期:
2023-02-10
修回日期:
2023-03-03
接受日期:
2023-03-27
出版日期:
2024-01-15
发布日期:
2023-04-07
通讯作者:
刘君
E-mail:liujun65@dlut.edu.cn
基金资助:
Received:
2023-02-10
Revised:
2023-03-03
Accepted:
2023-03-27
Online:
2024-01-15
Published:
2023-04-07
Contact:
Jun LIU
E-mail:liujun65@dlut.edu.cn
Supported by:
摘要:
梯度重构过程决定了有限体积法的空间离散精度和鲁棒性,针对二阶格心型有限体积法,研究并提出了一种新型梯度重构方法。该方法基于加权最小二乘原理,首先计算确定面元中心的变量值和变量梯度,然后针对不同网格类型分别使用中心差分、算术平均的方法求解单元格心变量梯度,在此基础上将边界条件与梯度重构过程相结合,发展了适配新方法的边界约束算法。利用精确测试函数进行网格收敛性研究,证明本文方法在光滑解条件下可以实现全场梯度的线性精确,一系列的无黏和黏性流动算例验证表明,相较于传统方法,本文方法可以有效降低近边界区域的数值耗散,提高计算精度,同时在大长宽比三角形网格条件下也具有良好的鲁棒性。
中图分类号:
魏雁昕, 刘君. 一种基于面元梯度重建的格心型有限体积空间离散方法[J]. 航空学报, 2024, 45(1): 128541-128541.
Yanxin WEI, Jun LIU. Spatial discretization algorithm for cell-centered finite volume method based on face gradient reconstruction[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 128541-128541.
1 | ABGRALL R. On essentially non-oscillatory schemes on unstructured meshes: Analysis and implementation[J]. Journal of Computational Physics, 1994, 114(1): 45-58. |
2 | HU C Q, SHU C W. Weighted essentially non-oscillatory schemes on triangular meshes[J]. Journal of Computational Physics, 1999, 150(1): 97-127. |
3 | DUMBSER M, KÄSER M. Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems[J]. Journal of Computational Physics, 2007, 221(2): 693-723. |
4 | BARTH T, FREDERICKSON P. Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction∥Proceedings of the 28th Aerospace Science Meeting. Reston: AIAA, 1990. |
5 | BARTH T. Recent developments in high order K-exact reconstruction on unstructured meshes[C]∥ Proceedings of the 31st Aerospace Sciences Meeting. Reston: AIAA, 1993. |
6 | WANG Q A, REN Y X, PAN J H, et al. Compact high order finite volume method on unstructured grids III: Variational reconstruction[J]. Journal of Computational Physics, 2017, 337: 1-26. |
7 | 任玉新, 王乾, 潘建华, 等. 构建非结构网格高精度有限体积方法的新途径[J]. 航空学报, 2021, 42(9): 625783. |
REN Y X, WANG Q, PAN J H, et al. Novel approaches to design of high order finite volume schemes on unstructured grids[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625783 (in Chinese). | |
8 | EKATERINARIS J A. High-order accurate, low numerical diffusion methods for aerodynamics[J]. Progress in Aerospace Sciences, 2005, 41(3-4): 192-300. |
9 | WANG Z J. High-order methods for the Euler and Navier–stokes equations on unstructured grids[J]. Progress in Aerospace Sciences, 2007, 43(1-3): 1-41. |
10 | ANTONIADIS A F, TSOUTSANIS P, DRIKAKIS D. Assessment of high-order finite volume methods on unstructured meshes for RANS solutions of aeronautical configurations[J]. Computers & Fluids, 2017, 146: 86-104. |
11 | 陈泽栋. 针对格心型有限体积法的基于格点的变量/梯度重构算法[D]. 大连: 大连理工大学, 2022. |
CHEN Z D. Variable/gradient reconstruction algorithm based on lattice points for lattice-centered finite volume method[D].Dalian: Dalian University of Technology, 2022 (in Chinese). | |
12 | BARTH T. A 3-D upwind Euler solver for unstructured meshes[C]∥Proceedings of the 10th Computational Fluid Dynamics Conference. Reston: AIAA, 1991. |
13 | WEI Y X, ZHANG F, LIU J, et al. A constrained boundary gradient reconstruction method for unstructured finite volume discretization of the Euler equations[J]. Computers & Fluids, 2023, 252: 105774. |
14 | THOMAS J L. Accuracy of gradient reconstruction on grids with high aspect ratio: 2008-12[R]. Hampton: National Institute of Aerospace, 2013. |
15 | DISKIN B, THOMAS J L. Comparison of node-centered and cell-centered unstructured finite-volume discretizations: Inviscid fluxes[J]. AIAA Journal, 2011, 49(4): 836-854. |
16 | DISKIN B, THOMAS J L, NIELSEN E J, et al. Comparison of node-centered and cell-centered unstructured finite-volume discretizations: Viscous fluxes[J]. AIAA Journal, 2010, 48(7): 1326-1338. |
17 | CHEN Z D, ZHANG F, LIU J, et al. A vertex-based reconstruction for cell-centered finite-volume discretization on unstructured grids[J]. Journal of Computational Physics, 2022, 451: 110827. |
18 | 蒋跃文, 叶正寅. 适用于任意网格拓扑和质量的格心有限体积法[J]. 力学学报, 2010, 42(5): 830-837. |
JIANG Y W, YE Z Y. A cell-centered finite volume method for arbitrary grid type[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(5): 830-837 (in Chinese). | |
19 | JAMESON A, SCHMIDT W, TURKEL E. Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes[C]∥14th Fluid and Plasma Dynamics Conference. Reston: AIAA, 1981. |
20 | CHEN Z D, ZHANG F, LIU J, et al. An iterative near-boundary reconstruction strategy for unstructured finite volume method[J]. Journal of Computational Physics, 2020, 418: 109621. |
21 | WANG N H, LI M, MA R, et al. Accuracy analysis of gradient reconstruction on isotropic unstructured meshes and its effects on inviscid flow simulation[J]. Advances in Aerodynamics, 2019, 1(1): 1-31. |
22 | BLAZEK J. Introduction[M]∥Computational Fluid Dynamics: Principles and Applications. Amsterdam: Elsevier, 2005: 1-4. |
23 | RAUWOENS P, VIERENDEELS J, MERCI B. A solution for the odd–even decoupling problem in pressure-correction algorithms for variable density flows[J]. Journal of Computational Physics, 2007, 227(1): 79-99. |
24 | JALALI A, SHARBATDAR M, OLLIVIER-GOOCH C. Accuracy analysis of unstructured finite volume discretization schemes for diffusive fluxes[J]. Computers and Fluids, 2014, 101: 220-232. |
25 | 王年华, 李明, 张来平. 非结构网格二阶有限体积法中黏性通量离散格式精度分析与改进[J]. 力学学报, 2018, 50(3): 527-537. |
WANG N H, LI M, ZHANG L P. Accuracy analysis and improvement of viscous flux schemes in unstructured second-order finite-volume discretization[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 527-537 (in Chinese). | |
26 | 肖艺, 明平剑. 改进最小二乘法的非结构网格梯度重构算法[J]. 哈尔滨工程大学学报, 2020, 41(12): 1819-1826. |
XIAO Y, MING P J. Gradient reconstruction of unstructured meshes based on improved least-squares method[J]. Journal of Harbin Engineering University, 2020, 41(12): 1819-1826 (in Chinese). | |
27 | HASELBACHER A. On constrained reconstruction operators[C]∥44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006. |
28 | 康忠良, 闫超. 适用于混合网格的约束最小二乘重构方法[J]. 航空学报, 2012, 33(9): 1598-1605. |
KANG Z L, YAN C. Constrained least-squares reconstruction method for mixed grids[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1598-1605 (in Chinese). | |
29 | 陈浩, 华如豪, 袁先旭, 等. 基于自适应笛卡尔网格的飞翼布局流动模拟[J]. 航空学报, 2022, 43(8): 125674. |
CHEN H, HUA R H, YUAN X X, et al. Simulation of flow around fly-wing configuration based on adaptive Cartesian grid[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 125674 (in Chinese). | |
30 | DADONEL A, GROSSMAN B. Surface boundary conditions for the numerical solution of the Euler equations in three dimensions[J]. AIAA Journal, 1993, 32(2): 285-293. |
31 | MENGALDO G, DE GRAZIA D, WITHERDEN F, et al. A guide to the implementation of boundary conditions in compact high-order methods for compressible aerodynamics[C]∥ Proceedings of the 7th AIAA Theoretical Fluid Mechanics Conference. Reston: AIAA, 2014. |
32 | VISBAL M. Evaluation of an implicit Navier-Stokes solver for some unsteady separated flows[C]∥ Proceedings of the 4th Joint Fluid Mechanics, Plasma Dynamics and Lasers Conference. Reston: AIAA, 1986. |
33 | COLLIS S S. Discontinuous Galerkin methods for turbulence simulation[C]∥Center for Turbulence Research Proceedings of the Summer Program,2002. |
[1] | 曹文博, 刘溢浪, 张伟伟. 基于降阶模型和梯度优化的流场加速收敛方法[J]. 航空学报, 2023, 44(6): 127090-127090. |
[2] | 刘君, 韩芳, 魏雁昕. 应用维数分裂方法推广MUSCL和WENO格式的若干问题[J]. 航空学报, 2022, 43(3): 125009-125009. |
[3] | 任伟杰, 谢文佳, 田正雨, 张烨, 于航. 高超声速数值激波失稳的网格依赖性[J]. 航空学报, 2021, 42(S1): 726376-726376. |
[4] | 肖光明, 张超, 桂业伟, 杜雁霞, 刘磊, 魏东. 基于TLBM-FVM耦合的飞行器舱内热环境跨尺度预测方法[J]. 航空学报, 2021, 42(9): 625710-625710. |
[5] | 卢昱锦, 肖天航, 邓双厚, 支豪林, 朱震浩, 陆召严. 着水初始条件对水陆两栖飞机着水性能的影响[J]. 航空学报, 2021, 42(7): 124483-124483. |
[6] | 邹东阳, 林敬周, 黄洁, 刘君. 面向三维激波问题的装配方法[J]. 航空学报, 2021, 42(3): 124141-124141. |
[7] | 吴肖, 曾捷, 胡子康, 李明, 胡锡涛. 变截面悬臂梁结构动载荷辨识方法[J]. 航空学报, 2020, 41(9): 223806-223806. |
[8] | 常思源, 白晓征, 崔小强, 刘君. 一种改进的非定常激波装配算法[J]. 航空学报, 2020, 41(2): 123498-123498. |
[9] | 李佳伟, 王江峰, 杨天鹏, 李龙飞, 王丁. “Ⅳ型”激波干扰中流-热-固耦合问题一体化计算分析[J]. 航空学报, 2019, 40(12): 123190-123190. |
[10] | 金禹彤, 陈吉昌, 卢昱锦, 肖天航, 童明波. 楔形体入波浪水面数值模拟[J]. 航空学报, 2019, 40(10): 122854-122854. |
[11] | 宋祥帅, 王恩美, 穆瑞楠, 谭述君, 兰澜. 格栅反射器型面的主动控制[J]. 航空学报, 2018, 39(6): 221541-221541. |
[12] | 周舟, 郭基联, 周义蛟, 沈安慰. PLS-SEM在装备成本估算核心参数中的应用[J]. 航空学报, 2018, 39(3): 221705-221705. |
[13] | 江中正, 赵文文, 袁震宇, 陈伟芳. 基于非线性耦合本构关系的改进边界条件[J]. 航空学报, 2018, 39(10): 122057-122057. |
[14] | 刘君, 董海波, 刘瑜. 化学非平衡流动解耦算法的回顾与新进展[J]. 航空学报, 2018, 39(1): 21090-021090. |
[15] | 卢昱锦, 肖天航, 李正洲. 高速平板着水数值模拟[J]. 航空学报, 2017, 38(S1): 721498-721498. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学