[1] 张来平, 邓小刚, 张涵信. 动网格生成技术及非定常计算方法进展综述[J]. 力学进展, 2010, 40(4):424-447. ZHANG L P, DENG X G, ZHANG H X. Reviews of moving grid generation techniques and numerical mehods for unsteady flow[J]. Advances in Mechanics, 2010, 40(4):424-447(in Chinese).
[2] 张伟伟, 高传强, 叶正寅. 气动弹性计算中网格变形方法研究进展[J]. 航空学报, 2014, 35(2):303-319. ZHANG W W, GAO C Q, YE Z Y. Research progress on mesh deformation method in computational aeroelasticity[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):303-319(in Chinese).
[3] 周璇, 李水乡, 孙树立, 等. 非结构网格变形方法研究进展[J]. 力学进展, 2011, 41(5):547-561. ZHOU X, LI S X, SUN S L, et al. Advances in the research on unstructured mesh deformation[J]. Advances in Mechanics, 2011, 41(5):547-561(in Chinese).
[4] ALLEN C B. Aeroelastic computations using algebraic grid motion[J]. Aeronautical Journal, 2002, 106(1064):559-570.
[5] BYUN C, GURUSWAMY G P. A parallel, multi-block, moving grid method for aeroelastic applications on full aircraft:AIAA-1998-4782[R]. Reston:AIAA, 1998.
[6] REUTHER J, JAMESON A, FARMER J, et al. Aerodynamics shape optimization of complex aircraft configurations via an adjoint formulation:AIAA-1996-0094[R]. Reston:AIAA, 1996.
[7] GAITONDE A L, FIDDES S P. A three-dimensional moving mesh method for the calculation of unsteady transonic flows[J]. Aeronautical Journal, 1995, 99(984):150-160.
[8] SPREKREIJSE S P, PRANANTA B B, KOK J C. A simple, robust and fast algorithm to compute deformations of multiblock structured grids:NLR-TP-2002-105[R]. Amsterdam:NLR, 2002.
[9] BATINA J T. Unsteady Euler algorithm with unstructured dynamic mesh for complex-aircraft aerodynamic analysis[J]. AIAA Journal, 1991, 29(3):327-333.
[10] FARHAT C, DEGAND C, KOOBUS B, et al. Torsional springs for two-dimensional dynamic unstructured fluid meshes[J]. Computational Methods in Applied Mechanics and Engineering, 1998, 163(1):231-245.
[11] BLOM F. Considerations on the spring analogy[J]. International Journal for Numerical Methods in Fluids, 2000, 32(6):647-668.
[12] JOHNSON A A, TEZDUYAR T E. Simulation of multiple spheres falling in a liquid-filled tube[J]. Computer Methods in Applied mechanics and Engineering, 1996, 134(3):351-373.
[13] NIELSEN E J, ANDERSON W K. Recent improvements in aerodynamic design optimization on unstructured meshes[J]. AIAA Journal, 2002, 40(6):1155-1163.
[14] LöEHNER R, YANG C. Improved ALE mesh velocities for moving bodies[J]. Communications in Numerical Methods in Engineering, 1996, 12(10):599-608.
[15] HELENBROOK B T. Mesh deformation using the biharmonic operator[J]. International Journal for Numerical Methods in Engineering, 2003, 56(7):1007-1021.
[16] LIU X Q, QIN N, XIA H. Fast dynamic grid deformation based on Delaunay graph mapping[J]. Journal of Computational Physics, 2006, 211(2):405-423.
[17] RENDALL T C, ALLEN C B. Unified fluid-structure interpolation and mesh motion using radial basis functions[J]. International Journal for Numerical Methods in Engineering, 2008, 74(10):1519-1559.
[18] ALLEN C B, RENDALL T C. Unified approach to CFD-CSD interpolation and mesh motion using radial basis functions:AIAA-2007-3804[R]. Reston:AIAA, 2007.
[19] WITTEVEEN J A S, BIJL H. Explicit mesh deformation using inverse distance weighting interpolation:AIAA-2009-3996[R]. Reston:AIAA, 2009.
[20] LEFRANCOIS E. A simple mesh deformation technique for fluid-structure interaction based on a submesh approach[J] International Journal for Numerical Methods in Engineering, 2008, 75(9):1085-1101.
[21] ZHANG L P, CHANG X H, DUAN X P, et al. Applications of dynamic hybrid grid method for three-dimensional moving/deforming boundary problems[J]. Computers & Fluids, 2012, 62:45-63.
[22] 张来平, 段旭鹏, 常兴华, 等. 基于Delaunay背景网格插值和局部网格重构的变形体动态混合网格生成技术[J]. 空气动力学学报, 2009, 27(1):32-40. ZHANG L P, DUAN X P, CHANG X H, et al. A hybrid dynamic grid generation technique for morphing bodies based on Delaunay graph and local remeshing[J]. Acta Aerodynamica Sinica, 2009, 27(1):32-40(in Chinese).
[23] CHANG X H, ZHANG L P, He X. Numerical study of the thunniform mode of fish swimming with different caudal fin shapes[J]. Computers & Fluids, 2012, 68:54-70.
[24] RENDALL T C, ALLEN C B. Efficient mesh motion using radial basis functions with data reduction algorithms[J]. Journal of Computational Physics, 2009, 228(17):6231-6249.
[25] RENDALL T C, ALLEN C B. Reduced surface point selection options for efficient mesh deformation using radial basis functions[J]. Journal of Computational Physics, 2010, 229(8):2810-2820.
[26] LIU Y, GUO Z, LIU J. RBFs-MSA hybrid method for mesh deformation[J]. Chinese Journal of Aeronautics, 2012, 25(4):500-507.
[27] 孙岩, 邓小刚, 王光学, 等. 基于径向基函数改进的Delaunay图映射动网格方法[J]. 航空学报, 2014, 35(3):727-735. SUN Y, DENG X G, WANG G X, et al. An improvement on delaunay graph mapping dynamic grid method based on radial basis functions[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):727-735(in Chinese).
[28] 王刚, 雷博琪, 叶正寅. 一种基于径向基函数的非结构混合网格变形技术[J]. 西北工业大学学报, 2011, 29(5):783-788. WANG G, LEI B Q, YE Z Y. An efficient deformation technique for hybrid unstructured grid using radial basis functions[J]. Journal of Northwestern Polytechnical University, 2011, 29(5):783-788(in Chinese).
[29] LUKE E, COLLINS E, BLADES E. A fast mesh deformation method using explicit interpolation[J]. Journal of Computational Physics, 2012, 231(2):586-601.
[30] DEVROYE L, MUCKE E, ZHU B. A note on point location of Delaunay triangulation of random points[J]. Algorithmica, 1998, 22(4):477-482. deformation based on Delaunay graph mapping[J]. Journal of Computational Physics, 2006, 211(2):405-423. [17] Rendall T C, Allen C B. Unified fluid-structure interpolation and mesh motion using radial basis functions[J]. International Journal for Numerical Methods in Engineering, 2008, 74(10):1519-1559. [18] Allen C B, Rendall T C. Unified approach to CFD-CSD interpolation and mesh motion using radial basis functions, AIAA-2007-3804[R]. Miami: AIAA, 2007. [19] Witteveen J A, Bijl H. Explicit mesh deformation using inverse distance weighting interpolation, AIAA-2009-3996[R]. San Antonio: AIAA, 2009. [20] Lefrancois E. A simple mesh deformation technique for fluid-structure interaction based on a submesh approach [J] International Journal for Numerical Methods in Engineering, 2008, 75(9):1085-1101. [21] Zhang L P, Chang X H, Duan X P, et al. Applications of dynamic hybrid grid method for three-dimensional moving/deforming boundary problems[J]. Computers & Fluids, 2012, 62:45-63. [22] Zhang L P, Duan X P, Chang X H, et al. A hybrid dynamic grid generation technique for morphing bodies based on Delaunay graph and local remeshing[J]. Acta Aerodynamica Sinica, 2009, 27(1):32-40. (in Chinese) 张来平,段旭鹏,常兴华等. 基于Delaunay背景网格插值和局部网格重构的变形体动态混合网格生成技术[J]. 空气动力学学报, 2009, 27(1):32-40. [23] Chang X H, Zhang L P, He X. Numerical study of the thunniform mode of fish swimming with different caudal fin shapes[J]. Computers & Fluids, 2012, 68:54-70. [24] Rendall T C, Allen C B. Efficient mesh motion using radial basis functions with data reduction algorithms[J]. Journal of Computational Physics, 2009, 228(17):6231-6249. [25] Rendall T C, Allen C B. Reduced surface point selection options for efficient mesh deformation using radial basis functions[J]. Journal of Computational Physics, 2010, 229(8):2810-2820. [26] Liu Y, Guo Z, Liu J. RBFs-MSA hybrid method for mesh deformation[J]. Chinese Journal of Aeronautics, 2012, 25(4):500-507. [27] Sun Y, Deng X G, Wang G X, et al. An improvement on delaunay graph mapping dynamic grid method based on radial basis functions[J]. Aeronautica et Astronautica Sinica, 2014, 35(3):727-735. (in Chinese) 孙岩,邓小刚,王光学等. 基于径向基函数改进的Delaunay图映射动网格方法[J]. 航空学报,2014, 35(3):727-735. [28] Wang G, Lei B Q, Ye Z Y. An efficient deformation technique for hybrid unstructured grid using radial basis functions[J]. Journal of Northwestern Polytechnical University, 2011, 29(5):783-788. (in Chinese) 王刚,雷博琪,叶正寅. 一种基于径向基函数的非结构混合网格变形技术[J]. 西北工业大学学报,2011, 29(5):783-788. [29] Luke E, Collins E, Blades E. A fast mesh deformation method using explicit interpolation[J]. Journal of Computational Physics, 2012, 231(2):586-601. [30] Devroye L, Mucke E, Zhu B. A note on point location of Delaunay triangulation of random points[J]. Algorithmica, 1998, 22(4):477–482. |