1 |
BAO C Y, WANG P, TANG G J. Integrated method of guidance, control and morphing for hypersonic morphing vehicle in glide phase[J]. Chinese Journal of Aeronautics, 2021, 34(5): 535-553.
|
2 |
BAO C Y, WANG P, TANG G J. Integrated guidance and control for hypersonic morphing missile based on variable span auxiliary control[J]. International Journal of Aerospace Engineering, 2019, 2019: 1-20.
|
3 |
HU K Y, LI W H, CHENG Z A. Fuzzy adaptive fault diagnosis and compensation for variable structure hypersonic vehicle with multiple faults[J]. PLoS One, 2021, 16(8): e0256200.
|
4 |
HU K Y, YANG C X, SUN W J. Adaptive sliding mode fault compensation for sensor faults of variable structure hypersonic vehicle[J]. Sensors, 2022, 22(4): 1523.
|
5 |
LÜ X Z, YUAN C, BAO W M, et al. Numerical and experimental investigation of aerodynamic heat control of leading edge of hypersonic vehicle’s flexible skin[J].Science China Information Sciences, 2022, 65(10): 1-14.
|
6 |
DING Y B, YUE X K, CHEN G S, et al. Review of control and guidance technology on hypersonic vehicle[J]. Chinese Journal of Aeronautics, 2022, 35(7): 1-18.
|
7 |
CHU L L, LI Q, GU F, et al. Design, modeling, and control of morphing aircraft: A review[J]. Chinese Journal of Aeronautics, 2022, 35(5): 220-246.
|
8 |
卢晓东, 张豪, 郭建国, 等. 高超声速飞行器滑模自适应迭代学习控制系统设计[J]. 西北工业大学学报, 2019, 37(6): 1120-1128.
|
|
LU X D, ZHANG H, GUO J G, et al. Iterative learning control combination with adaptive sliding mode technique for a hypersonic vehicle[J]. Journal of Northwestern Polytechnical University, 2019, 37(6):1120-1128 (in Chinese).
|
9 |
郭嘉宝, 赵长见, 宋志国. 一种基于动态逆-滑模的变形飞行器姿态控制方法研究[J]. 航天控制, 2022, 40(4): 12-17.
|
|
GUO J B, ZHAO C J, SONG Z G. A dynamic inverse-sliding mode based attitude control method for morphing aircraft[J]. Aerospace Control, 2022, 40(4): 12-17 (in Chinese).
|
10 |
路遥. 基于跟踪微分器的高超声速飞行器Backstepping控制[J]. 航空学报, 2021, 42(11):524737.
|
|
LU Y. Backstepping control for hypersonic flight vehicles based on tracking differentiator[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 524737 (in Chinese).
|
11 |
王忠森,廖宇新,魏才盛,等.高超声速飞行器快速终端滑模保性能容错控制[J/OL].航空学报(2023-03-21)[2023-03-22]..
|
|
WANG Z S, LIAO Y X, WEI C S, et al. Fault tolerant control of fast terminal sliding mode preserving performance of hypersonic vehicle[J/OL]. Acta Aeronautica et Astronautica Sinica (2023-03-21)[2023-03-22]. (in Chinese).
|
12 |
李政,于剑桥,赵新运.空空导弹敏捷转弯固定时间收敛滑模控制[J].航空学报,2023,44(8):327262.
|
|
LI Z, YU J Q, ZHAO X Y. Fixed-time convergent sliding mode control for agile turn of air-to-air missiles. Acta Aeronautica et Astronautica Sinica,2023,44(8):327262 (in Chinese).
|
13 |
刘继承, 江驹, 阴浩博, 等. 高超声速飞行器自适应固定时间抗饱和控制[J]. 哈尔滨工程大学学报, 2022, 43(7)1013-1022.
|
|
LIU J C, JIANG J, YIN H B, et al. Fixed-time antisaturation adaptive control of a hypersonic vehicle[J]. Journal of Harbin Engineering University, 2022, 43(7)1013-1022 (in Chinese).
|
14 |
魏启钊, 齐瑞云, 姜斌. 非最小相位高超声速飞行器自适应鲁棒容错控制[J]. 西北工业大学学报, 2021, 39(S1): 1-9.
|
|
WEI Q Z, QI R Y, JIANG B. Robust adaptive fault tolerant control for non-minimum phase hypersonic vehicle[J]. Journal of Northwestern Polytechnical University, 2021, 39(S1): 1-9 (in Chinese).
|
15 |
LIANG S, XU B, REN J R. Kalman-filter-based robust control for hypersonic flight vehicle with measurement noises[J]. Aerospace Science and Technology, 2021, 112: 106566.
|
16 |
LIU J C, JIANG J, YU C J, et al. Disturbance observer–based fixed-time robust control for constrained air-breathing hypersonic vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2022, 236(5): 957-974.
|
17 |
LV L, LIU X G, XIAO L, et al. A novel non-uniform optimal control approach for hypersonic cruise vehicle with waypoint and no-fly zone constraints[J]. International Journal of Systems Science, 2021, 52(13): 2704-2724.
|
18 |
SHI Y, WANG Z B. Onboard generation of optimal trajectories for hypersonic vehicles using deep learning[J]. Journal of Spacecraft and Rockets, 2021, 58(2): 400-414.
|
19 |
AN H, WU Q Q, WANG G, et al. Simplified longitudinal control of air-breathing hypersonic vehicles with hybrid actuators[J]. Aerospace Science and Technology, 2020, 104: 105936.
|
20 |
AN H, WU Q Q, WANG G, et al. Adaptive compound control of air-breathing hypersonic vehicles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4519-4532.
|
21 |
WU T C, WANG H L, YU Y, et al. Quantized fixed-time fault-tolerant attitude control for hypersonic reentry vehicles[J]. Applied Mathematical Modelling, 2021, 98: 143-160.
|
22 |
常璧麟, 龙离军, 程杨, 等. 多重事件触发机制下四旋翼飞行器的姿态跟踪控制[J]. 西安交通大学学报, 2022, 56(3): 206-214.
|
|
CHANG B L, LONG L J, CHENG Y, et al. Attitude tracking control of quadrotor aircraft under multi-event triggering mechanism[J]. Journal of Xi’an Jiaotong University, 2022, 56(3): 206-214 (in Chinese).
|
23 |
石永霞, 胡庆雷, 邵小东. 角速度受限下航天器姿态机动事件触发控制[J]. 中国科学(信息科学), 2022, 52(3): 506-520.
|
|
SHI Y X, HU Q L, SHAO X D. Event-triggered attitude maneuver control of spacecraft under angular velocity constraints[J]. Scientia Sinica (Informationis), 2022, 52(3): 506-520 (in Chinese).
|
24 |
王帅磊, 周绍磊, 祁亚辉, 等. 多航天器集中事件触发分组姿态协同控制[J]. 兵器装备工程学报, 2021, 42(4):183-187.
|
|
WANG S L, ZHOU S L, QI Y H, et al. Multi-spacecraft centralized event-triggered group attitude coordinated control[J]. Journal of Ordnance Equipment Engineering, 2021, 42(4):183-187 (in Chinese).
|
25 |
LV M L, DE SCHUTTER B, BALDI S. Nonrecursive control for formation-containment of HFV swarms with dynamic event-triggered communication[J]. IEEE Transactions on Industrial Informatics, 2023, 19(3): 3188-3197.
|
26 |
CAO Z R, JIA T G, NIU Y G. Self-triggered sliding mode control for digital fly-by-wire aircraft system[J]. Journal of the Franklin Institute, 2020, 357(15): 10492-10512.
|
27 |
SHI Y, SHAO X L. Neural adaptive appointed-time control for flexible air-breathing hypersonic vehicles: An event-triggered case[J].Neural Computing and Applications, 2021, 33(15): 9545-9563.
|
28 |
AN H, GUO Z Y, WANG G, et al. Neural adaptive control of air-breathing hypersonic vehicles robust to actuator dynamics[J]. ISA Transactions, 2021, 116: 17-29.
|