1 |
岳彩旭,张俊涛,刘献礼,等. 薄壁件铣削过程加工变形研究进展[J]. 航空学报, 2022, 43(4): 525164.
|
|
YUE C X, ZHANG J T, LIU X L, et al. Research progress on machining deformation of thin-walled parts in milling process[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 525164 (in Chinese).
|
2 |
徐金亭,牛金波,陈满森,等. 精密复杂曲面零件多轴数控加工技术研究进展[J]. 航空学报, 2021, 42(10): 524867.
|
|
XU J T, NIU J B, CHEN M S, et al. Research progress in multi-axis CNC machining of precision complex curved parts[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 524867 (in Chinese).
|
3 |
TUYSUZ O, ALTINTAS Y. Frequency domain updating of thin-walled workpiece dynamics using reduced order substructuring method in machining[J]. Journal of Manufacturing Science and Engineering, 2017, 139(7): 071013.
|
4 |
汤爱君. 薄壁件高速铣削三维稳定性及加工变形研究[D]. 济南: 山东大学, 2009: 47-51.
|
|
TANG A J. Three-dimensional stability and deformation of thin-walled part in high speed end milling[D]. Jinan: Shandong University, 2009: 47-51 (in Chinese).
|
5 |
付国强,饶勇建,谢云鹏,等. 几何误差贡献值影响下五轴数控机床运动轴误差灵敏度分析方法[J]. 中国机械工程, 2020, 31(13): 1518-1528.
|
|
FU G Q, RAO Y J, XIE Y P, et al. Error sensitivity analysis of motion axis for five-axis CNC machine tools with geometric error contribution[J]. China Mechanical Engineering, 2020, 31(13): 1518-1528 (in Chinese).
|
6 |
王海同,任子啸,刘志华,等. 导轨直线度惯性测量的时空一致技术[J/OL]. 中国机械工程, 2022: 1-8. (2022-10-11). .
|
|
WANG H T, REN Z X, LIU Z H, et al. Space-time consistent technology for inertial measurement of Guide rail straightness[J/OL]. China Mechanical Engineering, 2022: 1-8. (2022-10-11). (in Chinese).
|
7 |
WANG H T, LI F H, CAI Y L, et al. Experimental and theoretical analysis of ball screw under thermal effect[J]. Tribology International, 2020, 152: 106503.
|
8 |
刘圣前. 考虑离心力和陀螺效应的微铣削稳定性研究[D]. 大连: 大连理工大学, 2018: 10-30.
|
|
LIU S Q. Research on stability for micro-milling with centrifugal force and gyroscopic effect[D]. Dalian: Dalian University of Technology, 2018:10-30 (in Chinese).
|
9 |
陈冰,杨宝通,牛智炀,等. 面向航空发动机薄壁零件加工的自适应夹具设计现状与进展[J]. 航空制造技术, 2019, 62(7): 14-24.
|
|
CHEN B, YANG B T, NIU Z Y, et al. Adaptive fixture designing of thin-walled aero-engine workpiece: a survey of the state of art[J]. Aeronautical Manufacturing Technology, 2019, 62(7): 14-24 (in Chinese).
|
10 |
LI Z L, ZHU L M. An accurate method for determining cutter-workpiece engagements in five-axis milling with a general tool considering cutter runout[J]. Journal of Manufacturing Science and Engineering, 2018, 140(2): 1-11.
|
11 |
WEI Z C, WANG M J, CAI Y J, et al. Prediction of cutting force in ball-end milling of sculptured surface using improved Z-map[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(5): 1167-1177.
|
12 |
KISWANTO G, HENDRIKO H, DUC E. A hybrid analytical- and discrete-based methodology for determining cutter-workpiece engagement in five-axis milling[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(9): 2083-2096.
|
13 |
ZHU Z X, XI X L, XU X, et al. Digital Twin-driven machining process for thin-walled part manufacturing[J]. Journal of Manufacturing Systems, 2021, 59: 453-466.
|
14 |
LI Z Q, XIAO J D, HAN X, et al. Z-map based cutting force prediction for elliptical ultrasonic vibration-assisted milling process[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(5): 3237-3249.
|
15 |
XI X L, CAI Y L, GAO Y F, et al. An analytical method to calculate cutter-workpiece engagement based on arc-surface intersection method[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(1): 935-944.
|
16 |
SUN Y W, JIANG S L. Predictive modeling of chatter stability considering force-induced deformation effect in milling thin-walled parts[J]. International Journal of Machine Tools and Manufacture, 2018, 135:38-52.
|
17 |
CAMPA F J, LOPEZ DE LACALLE L N, CELAYA A. Chatter avoidance in the milling of thin floors with bull-nose end Mills: model and stability diagrams[J]. International Journal of Machine Tools and Manufacture, 2011, 51(1): 43-53.
|
18 |
SONG Q H, LIU Z Q, WAN Y, et al. Application of Sherman-Morrison-Woodbury formulas in instantaneous dynamic of peripheral milling for thin-walled component[J]. International Journal of Mechanical Sciences, 2015, 96-97: 79-90.
|
19 |
TUYSUZ O, ALTINTAS Y. Time-domain modeling of varying dynamic characteristics in thin-wall machining using perturbation and reduced-order substructuring methods[J]. Journal of Manufacturing Science and Engineering, 2018, 140(1):011015.
|
20 |
田卫军. 薄壁叶片多轴加工颤振抑制方法研究[D]. 西安: 西北工业大学, 2018: 28-32.
|
|
TIAN W J. Research on chatter suppression method for multi-axis machining of thin-walled blades[D]. Xi'an: Northwestern Polytechnical University, 2018: 28-32 (in Chinese).
|
21 |
鞠楠. 基于切削力分析的叶片加工刀具轨迹规划[D].北京: 北京交通大学, 2019: 25-28.
|
|
JU N. NC machining tool path planning of the blade based on cutting force analysis[D]. Beijing: Beijing Jiaotong University, 2019:25-28 (in Chinese).
|