[1] Silva W A. Discrete-time linear and nonlinear aerodynamic impulse responses for efficient CFD analyses[D]. Williamsburg: College of William & Mary, 1997.[2] Raveh D E, Mavris D N. Reduced-order models based on CFD impulse and step responses, AIAA-2001-1527[R]. Reston: AIAA, 2001.[3] Silva W A. Simultaneous excitation of multiple-input/ multiple-output CFD-based unsteady aerodynamic systems[J]. Journal of Aircraft, 2008, 45(4): 1267-1274.[4] Dietmar F, Christian B. Efficient computation of unsteady aerodynamic loads using computational-fluid-dynamics linearized methods[J]. Journal of Aircraft, 2013, 50(2): 425-440.[5] Li P B. System identification[M]. Beijing: China Water Conservancy and Electricity Press, 2010. (in Chinese) 李鹏波. 系统辨识[M]. 北京:中国水利水电出版社, 2010.[6] Chen G, Xu M, Chen S L. Volterra-series-based reduced-order model for unsteady aerodynamics[J]. Journal of Astronautics, 2004, 25(5): 492-495. (in Chinese) 陈刚, 徐敏, 陈士橹. 基于Volterra级数的非线性非定常气动力低阶模型[J]. 宇航学报, 2004, 25(5): 492-495.[7] Lind R, Prazenica R J, Brenner M J, et al. Identifying parameter-dependent Volterra kernels to predict aeroelastic instabilities[J]. AIAA Journal, 2005, 43(12): 2496-2502.[8] Wu Z G, Yang C. Volterra series based transonic unsteady aerodynamics modeling[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(4):373-376.(in Chinese) 吴志刚, 杨超. 基于Volterra级数的跨音速非定常气动力建模[J].北京航空航天大学学报, 2006, 32(4): 373-376.[9] Wang Y H, Han J L, Zhang T. Computation of Volterra kernels identification to Riccati nonlinear equation[C]//International Conference on Computer Science and Information Technology, 2010: 6-8[10] Wang Y H, Han J L, Zhou W. Third-order Volterra kernel identification technique in aerodynamics[J]. Applied Mechanics and Materials, 2011, 52-54: 618-623.[11] Thomas J P, Dowell E H, Hall K C. Harmonic balance approach for modeling three-dimensional nonlinear unsteady aerodynamics and aeroelasticity[C]//International Mechanical Engineering Congress & Exposition, 2002.[12] Antonios K A, Achilleas D Z. Wavelet neural networks: a practical guide[J]. Neural Networks, 2013, 42: 1-27.[13] Liu X Y, Yang C, Wu Z G. Wavelet-based reduced-order method for unsteady aerodynamics applicable to aeroelasticity[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6): 1149-1155. (in Chinese) 刘晓燕, 杨超, 吴志刚. 适用于气动弹性的小波非定常气动力降阶方法[J]. 航空学报, 2010, 31(6): 1149-1155.[14] Wang Y H, Han J L. Approach to identification of a second-order Volterra kernel of nonlinear systems by Chebyshev polynomials method[J]. Research Journal of Applied Sciences, Engineering and Technology, 2013, 5(20): 4950-4955.[15] Zhang B, Han J L. Spring-TFI hybrid dynamic mesh method with rotation correction[J]. Acta Aeronoutica et Astronautica Sinica, 2011, 32(10): 1815-1823. (in Chinese) 张兵, 韩景龙. 带旋转修正的弹簧-TFI混合动网格方法[J]. 航空学报, 2011, 32(10): 1815-1823.[16] Rivera J A, Dansberry B E, Bennett R M, et al. RNACA0012 benchmark model experimental flutter results with unsteady pressure distributions, AIAA-1992-2396-CP[R]. Reston: AIAA, 1992. |