[1] DOWELL E H, HALL K C. Modeling of fluid-structure interaction[J]. Annual Review of Fluid Mechanics, 2001, 33(1): 445-490.
[2] LUCIA D J, BERAN P S, SILVA W A. Reduced-order modeling: New approaches for computational physics[J]. Progress in Aerospace Sciences, 2004, 40(1-2): 51-117.
[3] 张伟伟, 叶正寅. 基于CFD的气动力建模及其在气动弹性中的应用[J]. 力学进展, 2008, 38(1): 77-86. ZHANG W W, YE Z Y. On unsteady aerodynamic modeling based on CFD technique and its applications on aeroelastic analysis[J]. Advances in Mechanics, 2008, 38(1): 77-86 (in Chinese).
[4] 陈刚, 李跃明. 非定常流场降阶模型及其应用研究进展与展望[J]. 力学进展, 2011, 41(6): 686-701. CHEN G, LI Y M. Advances and prospects of the reduced order model for unsteady flow and its application[J]. Advances in Mechanics, 2011, 41(6): 686-701 (in Chinese).
[5] 张伟伟, 叶正寅. 操纵面对跨声速机翼气动弹性特性的影响[J]. 航空学报, 2010, 66(7): 999-1007. ZHANG W W, YE Z Y. Effect of control surface on airfoil flutter in transonic flow[J]. Acta Aeronautica et Astronautica Sinica, 2010, 66(7): 999-1007 (in Chinese).
[6] ZHANG W W, YE Z Y. Reduced-order-model-based flutter analysis at high angle of attack[J]. Journal of Aircraft, 2007, 44(6): 2086-2089.
[7] ZHANG W W, YE Z Y. Control law design for transonic aeroservoelastic[J]. Aerospace Science and Technology, 2007, 11(2-3): 136-145.
[8] DOWELL E H, THOMAS J P, HALL K C. Transonic limit cycle oscillation analysis using reduced order aerodynamic models[J]. Journal of Fluids and Structures, 2004, 19(1): 17-27.
[9] BERAN P S, LUCIA D J, PETTIT C L. Reduced-order modeling of limit-cycle oscillation for aeroelastic systems[J]. Journal of Fluids and Structures, 2004, 19(5): 575-590.
[10] JONES D P, ROBERTS I, GAITONDE A L. Identification of limit cycles for piecewise nonlinear aeroelastic systems[J]. Journal of Fluids and Structures, 2007, 23(7): 1012-1028.
[11] ZHANG W W, WANG B B, YE Z Y, et al. Efficient method for limit cycle flutter analysis by nonlinear aerodynamic reduced-order models[J]. AIAA Journal, 2012, 50(5): 1019-1028.
[12] MANNARINO A, MANTEGAZZA P. Nonlinear aeroelastic reduced order modeling by recurrent neural networks[J]. Journal of Fluids and Structures, 2014, 48: 103-121.
[13] 寇家庆, 张伟伟, 叶正寅. 基于分层思路的动态非线性气动力建模方法[J]. 航空学报, 2015, 36(12): 3785-3797. KOU J Q, ZHANG W W, YE Z Y. Dynamic nonlinear aerodynamics modeling method based on layered model[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 3785-3797 (in Chinese).
[14] KOU J Q, ZHANG W W. An approach to enhance the generalization capability of nonlinear aerodynamic reduced-order models[J]. Aerospace Science and Technology, 2016, 49: 197-208.
[15] ZHANG W W, KOU J Q, WANG Z Y. Nonlinear aerodynamic reduced-order model for limit-cycle oscillation and flutter[J]. AIAA Journal, 2016, 54(10): 3302-3310.
[16] WANG Z C, ZHANG Z C, LEE D H, et al. Flutter analysis with structural uncertainty by using CFD-based aerodynamic ROM[C]//49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2008.
[17] SONG S F, LU Z Z, ZHANG W W, et al. Uncertainty importance measure by fast fourier transform for wing transonic flutter[J]. Journal of Aircraft, 2011, 48(2): 449-455.
[18] MARQUE S, BADCOCK K J, KHODAPARAST H H, et al. Transonic aeroelastic stability predictions under the influence of structural variability[J]. Journal of Aircraft, 2010, 47(4): 1229-1239.
[19] MARQUE S, BADCOCK K J, KHODAPARAST H H, et al. How structural model variability influences transonic aeroelastic stability[J]. Journal of Aircraft, 2012, 49(5): 1189-1199.
[20] ZHANG W W, CHEN K J, YE Z Y. Unsteady aerodynamic reduced-order modeling of an aeroelastic wing using arbitrary mode shapes[J]. Journal of Fluids and Structures, 2015, 58: 254-270.
[21] SCHAIRER E T, HAND L A. Measurements of unsteady aeroelastic model deformation by stereo photogrammetry[J]. Journal of Aircraft, 1999, 36(6): 1033-1040.
[22] GORDNIER R E. Computation of limit-cycle oscillations of a delta wing[J]. Journal of Aircraft, 2003, 40(6): 1206-1208. |